BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 27146685)

  • 1. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
    Wiltschko R; Ahmad M; Nießner C; Gehring D; Wiltschko W
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27146685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Magnetic Compass of Birds: The Role of Cryptochrome.
    Wiltschko R; Nießner C; Wiltschko W
    Front Physiol; 2021; 12():667000. PubMed ID: 34093230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle.
    Nießner C; Denzau S; Peichl L; Wiltschko W; Wiltschko R
    J Exp Biol; 2014 Dec; 217(Pt 23):4221-4. PubMed ID: 25472972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoreception in birds.
    Wiltschko R; Wiltschko W
    J R Soc Interface; 2019 Sep; 16(158):20190295. PubMed ID: 31480921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
    Lau JC; Rodgers CT; Hore PJ
    J R Soc Interface; 2012 Dec; 9(77):3329-37. PubMed ID: 22977104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
    Wiltschko R; Wiltschko W
    Biosensors (Basel); 2014 Sep; 4(3):221-42. PubMed ID: 25587420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Radical-Pair Mechanism of Magnetoreception.
    Hore PJ; Mouritsen H
    Annu Rev Biophys; 2016 Jul; 45():299-344. PubMed ID: 27216936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals.
    Deviers J; Cailliez F; de la Lande A; Kattnig DR
    J Chem Phys; 2022 Jan; 156(2):025101. PubMed ID: 35032990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoreception: activation of avian cryptochrome 1a in various light conditions.
    Nießner C; Denzau S; Peichl L; Wiltschko W; Wiltschko R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Dec; 204(12):977-984. PubMed ID: 30350127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quantum needle of the avian magnetic compass.
    Hiscock HG; Worster S; Kattnig DR; Steers C; Jin Y; Manolopoulos DE; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4634-9. PubMed ID: 27044102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.
    Nießner C; Denzau S; Stapput K; Ahmad M; Peichl L; Wiltschko W; Wiltschko R
    J R Soc Interface; 2013 Nov; 10(88):20130638. PubMed ID: 23966619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.
    Wiltschko R; Gehring D; Denzau S; Nießner C; Wiltschko W
    J Exp Biol; 2014 Dec; 217(Pt 23):4225-8. PubMed ID: 25472973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.
    Hammad M; Albaqami M; Pooam M; Kernevez E; Witczak J; Ritz T; Martino C; Ahmad M
    Photochem Photobiol Sci; 2020 Mar; 19(3):341-352. PubMed ID: 32065192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical amplification of magnetic field effects relevant to avian magnetoreception.
    Kattnig DR; Evans EW; Déjean V; Dodson CA; Wallace MI; Mackenzie SR; Timmel CR; Hore PJ
    Nat Chem; 2016 Apr; 8(4):384-91. PubMed ID: 27001735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception.
    Dodson CA; Hore PJ; Wallace MI
    Trends Biochem Sci; 2013 Sep; 38(9):435-46. PubMed ID: 23938034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
    Leberecht B; Kobylkov D; Karwinkel T; Döge S; Burnus L; Wong SY; Apte S; Haase K; Musielak I; Chetverikova R; Dautaj G; Bassetto M; Winklhofer M; Hore PJ; Mouritsen H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):97-106. PubMed ID: 35019998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception.
    Worster S; Kattnig DR; Hore PJ
    J Chem Phys; 2016 Jul; 145(3):035104. PubMed ID: 27448908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
    Ahmad M; Galland P; Ritz T; Wiltschko R; Wiltschko W
    Planta; 2007 Feb; 225(3):615-24. PubMed ID: 16955271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.