BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 27146685)

  • 21. Cryptochrome magnetoreception: four tryptophans could be better than three.
    Wong SY; Wei Y; Mouritsen H; Solov'yov IA; Hore PJ
    J R Soc Interface; 2021 Nov; 18(184):20210601. PubMed ID: 34753309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of Radical-Radical Distances in Light-Active Proteins and Their Implication for Biological Magnetoreception.
    Nohr D; Paulus B; Rodriguez R; Okafuji A; Bittl R; Schleicher E; Weber S
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8550-8554. PubMed ID: 28627073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
    Nießner C; Winklhofer M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):499-507. PubMed ID: 28612234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polarized light modulates light-dependent magnetic compass orientation in birds.
    Muheim R; Sjöberg S; Pinzon-Rodriguez A
    Proc Natl Acad Sci U S A; 2016 Feb; 113(6):1654-9. PubMed ID: 26811473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark.
    Pooam M; Arthaut LD; Burdick D; Link J; Martino CF; Ahmad M
    Planta; 2019 Feb; 249(2):319-332. PubMed ID: 30194534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light.
    Hiscock HG; Hiscock TW; Kattnig DR; Scrivener T; Lewis AM; Manolopoulos DE; Hore PJ
    Q Rev Biophys; 2019 Oct; 52():e9. PubMed ID: 31637984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass.
    Möller A; Sagasser S; Wiltschko W; Schierwater B
    Naturwissenschaften; 2004 Dec; 91(12):585-8. PubMed ID: 15551029
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
    Günther A; Einwich A; Sjulstok E; Feederle R; Bolte P; Koch KW; Solov'yov IA; Mouritsen H
    Curr Biol; 2018 Jan; 28(2):211-223.e4. PubMed ID: 29307554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ascorbic acid may not be involved in cryptochrome-based magnetoreception.
    Nielsen C; Kattnig DR; Sjulstok E; Hore PJ; Solov'yov IA
    J R Soc Interface; 2017 Dec; 14(137):. PubMed ID: 29263128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.
    Liedvogel M; Maeda K; Henbest K; Schleicher E; Simon T; Timmel CR; Hore PJ; Mouritsen H
    PLoS One; 2007 Oct; 2(10):e1106. PubMed ID: 17971869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptochromes in Mammals and Birds: Clock or Magnetic Compass?
    Kavet R; Brain J
    Physiology (Bethesda); 2021 May; 36(3):183-194. PubMed ID: 33904789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?
    Liedvogel M; Mouritsen H
    J R Soc Interface; 2010 Apr; 7 Suppl 2(Suppl 2):S147-62. PubMed ID: 19906675
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proposal to use superparamagnetic nanoparticles to test the role of cryptochrome in magnetoreception.
    Worster SB; Hore PJ
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30381345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model for photoreceptor-based magnetoreception in birds.
    Ritz T; Adem S; Schulten K
    Biophys J; 2000 Feb; 78(2):707-18. PubMed ID: 10653784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Magnetically Sensitive Radical Photochemistry of Non-natural Flavoproteins.
    Zollitsch TM; Jarocha LE; Bialas C; Henbest KB; Kodali G; Dutton PL; Moser CC; Timmel CR; Hore PJ; Mackenzie SR
    J Am Chem Soc; 2018 Jul; 140(28):8705-8713. PubMed ID: 29940116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitive fluorescence-based detection of magnetic field effects in photoreactions of flavins.
    Evans EW; Li J; Storey JG; Maeda K; Henbest KB; Dodson CA; Hore PJ; Mackenzie SR; Timmel CR
    Phys Chem Chem Phys; 2015 Jul; 17(28):18456-63. PubMed ID: 26108474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acuity of a cryptochrome and vision-based magnetoreception system in birds.
    Solov'yov IA; Mouritsen H; Schulten K
    Biophys J; 2010 Jul; 99(1):40-9. PubMed ID: 20655831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.