These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27146981)

  • 1. Spontaneous activations follow a common developmental course across primary sensory areas in mouse neocortex.
    Frye CG; MacLean JN
    J Neurophysiol; 2016 Aug; 116(2):431-7. PubMed ID: 27146981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of graph invariants in functional neocortical circuitry reveals generalized features common to three areas of sensory cortex.
    Gururangan SS; Sadovsky AJ; MacLean JN
    PLoS Comput Biol; 2014 Jul; 10(7):e1003710. PubMed ID: 25010654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of topologically similar functional modules defines mouse primary auditory and somatosensory microcircuitry.
    Sadovsky AJ; MacLean JN
    J Neurosci; 2013 Aug; 33(35):14048-60, 14060a. PubMed ID: 23986241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent cortical circuit dynamics contain dense, interwoven ensembles of spike sequences.
    Dechery JB; MacLean JN
    J Neurophysiol; 2017 Sep; 118(3):1914-1925. PubMed ID: 28724786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic computation and sensory processing in neocortical layer 2/3.
    Petersen CC; Crochet S
    Neuron; 2013 Apr; 78(1):28-48. PubMed ID: 23583106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early network activity propagates bidirectionally between hippocampus and cortex.
    Barger Z; Easton CR; Neuzil KE; Moody WJ
    Dev Neurobiol; 2016 Jun; 76(6):661-72. PubMed ID: 26385616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex.
    Maravall M; Koh IY; Lindquist WB; Svoboda K
    Cereb Cortex; 2004 Jun; 14(6):655-64. PubMed ID: 15054062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging input and output of neocortical networks in vivo.
    Kerr JN; Greenberg D; Helmchen F
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):14063-8. PubMed ID: 16157876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical activity patterns and the functional maturation of the neocortex.
    Kilb W; Kirischuk S; Luhmann HJ
    Eur J Neurosci; 2011 Nov; 34(10):1677-86. PubMed ID: 22103424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal dynamics determine the cortical response to thalamic stimulation.
    MacLean JN; Watson BO; Aaron GB; Yuste R
    Neuron; 2005 Dec; 48(5):811-23. PubMed ID: 16337918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling slow waves of neural activity: a novel form of network activity in developing neocortex.
    Peinado A
    J Neurosci; 2000 Jan; 20(2):RC54. PubMed ID: 10632620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse visual neocortex supports multiple stereotyped patterns of microcircuit activity.
    Sadovsky AJ; MacLean JN
    J Neurosci; 2014 Jun; 34(23):7769-77. PubMed ID: 24899701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity.
    Matsui T; Murakami T; Ohki K
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6556-61. PubMed ID: 27185944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise development of functional and anatomical columns in the neocortex.
    Bureau I; Shepherd GM; Svoboda K
    Neuron; 2004 Jun; 42(5):789-801. PubMed ID: 15182718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding thalamic afferent input using microcircuit spiking activity.
    Sederberg AJ; Palmer SE; MacLean JN
    J Neurophysiol; 2015 Apr; 113(7):2921-33. PubMed ID: 25695647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internally mediated developmental desynchronization of neocortical network activity.
    Golshani P; Gonçalves JT; Khoshkhoo S; Mostany R; Smirnakis S; Portera-Cailliau C
    J Neurosci; 2009 Sep; 29(35):10890-9. PubMed ID: 19726647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagating waves of activity in the neocortex: what they are, what they do.
    Wu JY; Xiaoying Huang ; Chuan Zhang
    Neuroscientist; 2008 Oct; 14(5):487-502. PubMed ID: 18997124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal circuits of the neocortex.
    Douglas RJ; Martin KA
    Annu Rev Neurosci; 2004; 27():419-51. PubMed ID: 15217339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Spectrum of Asynchronous Dynamics in Spiking Networks as a Model for the Diversity of Non-rhythmic Waking States in the Neocortex.
    Zerlaut Y; Zucca S; Panzeri S; Fellin T
    Cell Rep; 2019 Apr; 27(4):1119-1132.e7. PubMed ID: 31018128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossmodal propagation of sensory-evoked and spontaneous activity in the rat neocortex.
    Takagaki K; Zhang C; Wu JY; Lippert MT
    Neurosci Lett; 2008 Feb; 431(3):191-6. PubMed ID: 18178313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.