BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27147049)

  • 1. Methods for Assessing Nuclear Rotation and Nuclear Positioning in Developing Skeletal Muscle Cells.
    Wilson MH; Bray MG; Holzbaur EL
    Methods Mol Biol; 2016; 1411():269-90. PubMed ID: 27147049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells.
    Wilson MH; Holzbaur EL
    J Cell Sci; 2012 Sep; 125(Pt 17):4158-69. PubMed ID: 22623723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging Approaches to Investigate Myonuclear Positioning in Drosophila.
    Azevedo M; Schulman VK; Folker E; Balakrishnan M; Baylies M
    Methods Mol Biol; 2016; 1411():291-312. PubMed ID: 27147050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule motors involved in nuclear movement during skeletal muscle differentiation.
    Gache V; Gomes ER; Cadot B
    Mol Biol Cell; 2017 Apr; 28(7):865-874. PubMed ID: 28179457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An In Vitro System to Measure the Positioning, Stiffness, and Rupture of the Nucleus in Skeletal Muscle.
    Roman W; Pimentel MR; Gomes ER
    Methods Mol Biol; 2018; 1840():283-293. PubMed ID: 30141051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear alignment in myotubes requires centrosome proteins recruited by nesprin-1.
    Espigat-Georger A; Dyachuk V; Chemin C; Emorine L; Merdes A
    J Cell Sci; 2016 Nov; 129(22):4227-4237. PubMed ID: 27802164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers.
    Liu Y; Cseresnyés Z; Randall WR; Schneider MF
    J Cell Biol; 2001 Oct; 155(1):27-39. PubMed ID: 11581284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function.
    Metzger T; Gache V; Xu M; Cadot B; Folker ES; Richardson BE; Gomes ER; Baylies MK
    Nature; 2012 Mar; 484(7392):120-4. PubMed ID: 22425998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear movement during myotube formation is microtubule and dynein dependent and is regulated by Cdc42, Par6 and Par3.
    Cadot B; Gache V; Vasyutina E; Falcone S; Birchmeier C; Gomes ER
    EMBO Rep; 2012 Aug; 13(8):741-9. PubMed ID: 22732842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells.
    Wilson MH; Holzbaur EL
    Development; 2015 Jan; 142(1):218-28. PubMed ID: 25516977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells.
    Cutler AA; Jackson JB; Corbett AH; Pavlath GK
    J Cell Sci; 2018 Feb; 131(3):. PubMed ID: 29361530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear exclusion of forkhead box O and Elk1 and activation of nuclear factor-kappaB are required for C2C12-RasV12C40 myoblast differentiation.
    De Alvaro C; Nieto-Vazquez I; Rojas JM; Lorenzo M
    Endocrinology; 2008 Feb; 149(2):793-801. PubMed ID: 17962350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of human bone marrow stem cells to individual skeletal myotubes followed by myogenic gene activation.
    Lee JH; Kosinski PA; Kemp DM
    Exp Cell Res; 2005 Jul; 307(1):174-82. PubMed ID: 15922737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homer modulates NFAT-dependent signaling during muscle differentiation.
    Stiber JA; Tabatabaei N; Hawkins AF; Hawke T; Worley PF; Williams RS; Rosenberg P
    Dev Biol; 2005 Nov; 287(2):213-24. PubMed ID: 16226241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends.
    Zhang M; McLennan IS
    Dev Dyn; 1995 Oct; 204(2):168-77. PubMed ID: 8589440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of activated satellite cells in denervated muscle following single fusions in situ and in cell culture.
    Borisov AB; Dedkov EI; Carlson BM
    Histochem Cell Biol; 2005 Jul; 124(1):13-23. PubMed ID: 16001203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway.
    Horsley V; Friday BB; Matteson S; Kegley KM; Gephart J; Pavlath GK
    J Cell Biol; 2001 Apr; 153(2):329-38. PubMed ID: 11309414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels.
    Bettadapur A; Suh GC; Geisse NA; Wang ER; Hua C; Huber HA; Viscio AA; Kim JY; Strickland JB; McCain ML
    Sci Rep; 2016 Jun; 6():28855. PubMed ID: 27350122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles.
    Pin CL; Merrifield PA
    Dev Biol; 1997 Aug; 188(1):147-66. PubMed ID: 9245519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerin increase in regenerating muscle fibers.
    Squarzoni S; Sabatelli P; Capanni C; Lattanzi G; Rutigliano C; Columbaro M; Mattioli E; Rocca M; Maraldi NM
    Eur J Histochem; 2005; 49(4):355-62. PubMed ID: 16377577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.