BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 27147051)

  • 21. A chromatin binding site in the tail domain of nuclear lamins that interacts with core histones.
    Taniura H; Glass C; Gerace L
    J Cell Biol; 1995 Oct; 131(1):33-44. PubMed ID: 7559784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha.
    Gesson K; Rescheneder P; Skoruppa MP; von Haeseler A; Dechat T; Foisner R
    Genome Res; 2016 Apr; 26(4):462-73. PubMed ID: 26798136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation.
    Briand N; Collas P
    Nucleus; 2018 Jan; 9(1):216-226. PubMed ID: 29517398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins.
    Harr JC; Luperchio TR; Wong X; Cohen E; Wheelan SJ; Reddy KL
    J Cell Biol; 2015 Jan; 208(1):33-52. PubMed ID: 25559185
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay of lamin A and lamin B LADs on the radial positioning of chromatin.
    Forsberg F; Brunet A; Ali TML; Collas P
    Nucleus; 2019 Dec; 10(1):7-20. PubMed ID: 30663495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nuclear lamina and its proposed roles in tumorigenesis: projection on the hematologic malignancies and future targeted therapy.
    Prokocimer M; Margalit A; Gruenbaum Y
    J Struct Biol; 2006 Aug; 155(2):351-60. PubMed ID: 16697219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of lamins in 3D genome organization and global gene expression.
    Kim Y; Zheng X; Zheng Y
    Nucleus; 2019 Dec; 10(1):33-41. PubMed ID: 30755082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex effects of laminopathy mutations on nuclear structure and function.
    Ho R; Hegele RA
    Clin Genet; 2019 Feb; 95(2):199-209. PubMed ID: 30280378
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lamina-associated domains: peripheral matters and internal affairs.
    Briand N; Collas P
    Genome Biol; 2020 Apr; 21(1):85. PubMed ID: 32241294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laminopathies.
    Broers JL; Hutchison CJ; Ramaekers FC
    J Pathol; 2004 Nov; 204(4):478-88. PubMed ID: 15495262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners.
    Montes de Oca R; Shoemaker CJ; Gucek M; Cole RN; Wilson KL
    PLoS One; 2009 Sep; 4(9):e7050. PubMed ID: 19759913
    [TBL] [Abstract][Full Text] [Related]  

  • 33. O-Linked β-N-acetylglucosamine (O-GlcNAc) regulates emerin binding to barrier to autointegration factor (BAF) in a chromatin- and lamin B-enriched "niche".
    Berk JM; Maitra S; Dawdy AW; Shabanowitz J; Hunt DF; Wilson KL
    J Biol Chem; 2013 Oct; 288(42):30192-30209. PubMed ID: 24014020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear lamins are not required for lamina-associated domain organization in mouse embryonic stem cells.
    Amendola M; van Steensel B
    EMBO Rep; 2015 May; 16(5):610-7. PubMed ID: 25784758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro interaction of the carboxy-terminal domain of lamin A with actin.
    Sasseville AM; Langelier Y
    FEBS Lett; 1998 Apr; 425(3):485-9. PubMed ID: 9563518
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-protein interactions between human nuclear lamins expressed in yeast.
    Ye Q; Worman HJ
    Exp Cell Res; 1995 Jul; 219(1):292-8. PubMed ID: 7628545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lamins in the nuclear interior - life outside the lamina.
    Naetar N; Ferraioli S; Foisner R
    J Cell Sci; 2017 Jul; 130(13):2087-2096. PubMed ID: 28668931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the Drosophila melanogaster genome at the nuclear lamina.
    Pickersgill H; Kalverda B; de Wit E; Talhout W; Fornerod M; van Steensel B
    Nat Genet; 2006 Sep; 38(9):1005-14. PubMed ID: 16878134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of nuclear lamina growth in interphase.
    Zhironkina OA; Kurchashova SY; Pozharskaia VA; Cherepanynets VD; Strelkova OS; Hozak P; Kireev II
    Histochem Cell Biol; 2016 Apr; 145(4):419-32. PubMed ID: 26883443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Filaments made from A- and B-type lamins differ in structure and organization.
    Goldberg MW; Huttenlauch I; Hutchison CJ; Stick R
    J Cell Sci; 2008 Jan; 121(Pt 2):215-25. PubMed ID: 18187453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.