These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27147075)

  • 1. Estimation of optical properties of neuroendocrine pancreas tumor with double-integrating-sphere system and inverse Monte Carlo model.
    Saccomandi P; Larocca ES; Rendina V; Schena E; D'Ambrosio R; Crescenzi A; Di Matteo FM; Silvestri S
    Lasers Med Sci; 2016 Aug; 31(6):1041-50. PubMed ID: 27147075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational simulation of temperature elevations in tumors using Monte Carlo method and comparison to experimental measurements in laser photothermal therapy.
    Manuchehrabadi N; Chen Y; Lebrun A; Ma R; Zhu L
    J Biomech Eng; 2013 Dec; 135(12):121007. PubMed ID: 24026290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical characteristics of cartilage at a wavelength of 1560 nm and their dynamic behavior under laser heating conditions.
    Sviridov AP; Kondyurin AV
    J Biomed Opt; 2010; 15(5):055003. PubMed ID: 21054085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring system for investigating the effect of temperature change on optical properties.
    Kara E; Çilesiz İ; Gülsoy M
    Lasers Med Sci; 2018 Nov; 33(8):1763-1768. PubMed ID: 29858971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm.
    Honda N; Ishii K; Terada T; Nanjo T; Awazu K
    J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorectal tumors and hepatic metastases differ in their optical properties-relevance for dosimetry in laser-induced interstitial thermotherapy.
    Holmer C; Lehmann KS; Risk J; Roggan A; Germer CT; Reissfelder C; Isbert C; Buhr HJ; Ritz JP
    Lasers Surg Med; 2006 Apr; 38(4):296-304. PubMed ID: 16526042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in optical properties of ex vivo rat prostate due to heating.
    Skinner MG; Everts S; Reid AD; Vitkin IA; Lilge L; Sherar MD
    Phys Med Biol; 2000 May; 45(5):1375-86. PubMed ID: 10843110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of light losses of sample between two integrating spheres on optical properties estimation.
    Zhu D; Lu W; Zeng S; Luo Q
    J Biomed Opt; 2007; 12(6):064004. PubMed ID: 18163820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and thermal properties of nasal septal cartilage.
    Youn JI; Telenkov SA; Kim E; Bhavaraju NC; Wong BJ; Valvano JW; Milner TE
    Lasers Surg Med; 2000; 27(2):119-28. PubMed ID: 10960818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in optical properties between healthy and pathological human colon tissues using a Ti:sapphire laser: an in vitro study using the Monte Carlo inversion technique.
    Wei HJ; Xing D; Wu GY; Gu HM; Lu JJ; Jin Y; Li XY
    J Biomed Opt; 2005; 10(4):44022. PubMed ID: 16178655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Goniometric measurement for the estimation of anisotropy coefficient of human and animal pancreas.
    Saccomandi P; Schena E; Massaroni C; Di Matteo FM; Silvestri S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1283-6. PubMed ID: 26736502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous changes in the optical properties of liver tissue during laser-induced interstitial thermotherapy.
    Ritz JP; Roggan A; Germer CT; Isbert C; Müller G; Buhr HJ
    Lasers Surg Med; 2001; 28(4):307-12. PubMed ID: 11344509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range.
    Yaroslavsky AN; Schulze PC; Yaroslavsky IV; Schober R; Ulrich F; Schwarzmaier HJ
    Phys Med Biol; 2002 Jun; 47(12):2059-73. PubMed ID: 12118601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variations in tissue optical parameters with the incident power of an infrared laser.
    Hamdy O; Mohammed HS
    PLoS One; 2022; 17(1):e0263164. PubMed ID: 35100314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of color perception of layered dental composites using optical properties to evaluate the benefit of esthetic layer preparation technique.
    Friebel M; Pernell O; Cappius HJ; Helfmann J; Meinke MC
    Dent Mater; 2012 Apr; 28(4):424-32. PubMed ID: 22177781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Temperature distribution based on Monte Carlo method of optical transmission in tissues of laser ablation].
    Wang Y; Bai J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jul; 37(4):252-4, 280. PubMed ID: 24195389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue.
    Wang Q; Shastri K; Pfefer TJ
    Appl Opt; 2010 Oct; 49(28):5309-20. PubMed ID: 20885467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.