These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Migration and exposure assessment of silver from a PVC nanocomposite. Cushen M; Kerry J; Morris M; Cruz-Romero M; Cummins E Food Chem; 2013 Aug; 139(1-4):389-97. PubMed ID: 23561122 [TBL] [Abstract][Full Text] [Related]
4. Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Addo Ntim S; Thomas TA; Begley TH; Noonan GO Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(6):1003-11. PubMed ID: 25831019 [TBL] [Abstract][Full Text] [Related]
5. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 degrees C: possible role of biogenic amines as spoilage indicators. Balamatsia CC; Paleologos EK; Kontominas MG; Savvaidis IN Antonie Van Leeuwenhoek; 2006 Jan; 89(1):9-17. PubMed ID: 16528580 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the migration potential of nanosilver from nanoparticle-coated low-density polyethylene food packaging into food simulants. Hannon JC; Kerry JP; Cruz-Romero M; Azlin-Hasim S; Morris M; Cummins E Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016; 33(1):167-78. PubMed ID: 26523861 [TBL] [Abstract][Full Text] [Related]
7. Human exposure assessment of silver and copper migrating from an antimicrobial nanocoated packaging material into an acidic food simulant. Hannon JC; Kerry JP; Cruz-Romero M; Azlin-Hasim S; Morris M; Cummins E Food Chem Toxicol; 2016 Sep; 95():128-36. PubMed ID: 27402098 [TBL] [Abstract][Full Text] [Related]
8. Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. Fernández A; Picouet P; Lloret E J Food Prot; 2010 Dec; 73(12):2263-9. PubMed ID: 21219746 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of silver release from nanoparticle-treated baby products. Ding R; Yang P; Yang Y; Yang Z; Luo L; Li H; Wang Q Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Oct; 35(10):2052-2061. PubMed ID: 29847240 [TBL] [Abstract][Full Text] [Related]
10. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Loeschner K; Navratilova J; Grombe R; Linsinger TP; Købler C; Mølhave K; Larsen EH Food Chem; 2015 Aug; 181():78-84. PubMed ID: 25794724 [TBL] [Abstract][Full Text] [Related]
11. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Zhai X; Li Z; Shi J; Huang X; Sun Z; Zhang D; Zou X; Sun Y; Zhang J; Holmes M; Gong Y; Povey M; Wang S Food Chem; 2019 Aug; 290():135-143. PubMed ID: 31000029 [TBL] [Abstract][Full Text] [Related]
12. Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: microbiological, chemical, sensory attributes. Patsias A; Chouliara I; Badeka A; Savvaidis IN; Kontominas MG Food Microbiol; 2006 Aug; 23(5):423-9. PubMed ID: 16943033 [TBL] [Abstract][Full Text] [Related]
13. Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. Cushen M; Kerry J; Morris M; Cruz-Romero M; Cummins E J Agric Food Chem; 2014 Feb; 62(6):1403-11. PubMed ID: 24450547 [TBL] [Abstract][Full Text] [Related]
14. Silver migration from nanosilver and a commercially available zeolite filler polyethylene composites to food simulants. Cushen M; Kerry J; Morris M; Cruz-Romero M; Cummins E Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(6):1132-40. PubMed ID: 24646448 [TBL] [Abstract][Full Text] [Related]
15. Effect of a nano-silver coating on the quality of fresh turkey meat during storage after modified atmosphere or vacuum packaging. Deus D; Kehrenberg C; Schaudien D; Klein G; Krischek C Poult Sci; 2017 Feb; 96(2):449-457. PubMed ID: 27647930 [TBL] [Abstract][Full Text] [Related]
16. Food and Beverage Ingredients Induce the Formation of Silver Nanoparticles in Products Stored within Nanotechnology-Enabled Packaging. Yang T; Paulose T; Redan BW; Mabon JC; Duncan TV ACS Appl Mater Interfaces; 2021 Jan; 13(1):1398-1412. PubMed ID: 33398990 [TBL] [Abstract][Full Text] [Related]
17. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 degrees C. Chouliara E; Karatapanis A; Savvaidis IN; Kontominas MG Food Microbiol; 2007 Sep; 24(6):607-17. PubMed ID: 17418312 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the effectiveness of non-irradiated and chlorine-free packaging for fresh beef preservation. Rodrigues JB; Sarantópoulos CI; Bromberg R; Andrade JC; Brunelli K; Miyagusku L; Marquezini MG; Yamada EA Meat Sci; 2017 Mar; 125():30-36. PubMed ID: 27883959 [TBL] [Abstract][Full Text] [Related]
19. Influence of aqueous food simulants on potential nanoparticle detection in migration studies involving nanoenabled food-contact substances. Addo Ntim S; Thomas TA; Noonan GO Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):905-12. PubMed ID: 27049753 [TBL] [Abstract][Full Text] [Related]
20. Formation of biogenic amines and relation to microbial flora and sensory changes in smoked turkey breast fillets stored under various packaging conditions at 4 degrees C. Ntzimani AG; Paleologos EK; Savvaidis IN; Kontominas MG Food Microbiol; 2008 May; 25(3):509-17. PubMed ID: 18355676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]