BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27147218)

  • 1. Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum.
    Bai X; Song H; Lavoie M; Zhu K; Su Y; Ye H; Chen S; Fu Z; Qian H
    Sci Rep; 2016 May; 6():25494. PubMed ID: 27147218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Biodiesel from microalgae: ways of increasing effectiveness of lipids accumulation by genetic engineering methods].
    Korkhovoĭ VI; Blium IaB
    Tsitol Genet; 2013; 47(6):30-42. PubMed ID: 24437196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles.
    Chauton MS; Winge P; Brembu T; Vadstein O; Bones AM
    Plant Physiol; 2013 Feb; 161(2):1034-48. PubMed ID: 23209127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of diatom glucose-6-phosphate dehydrogenase on lipogenic NADPH supply in green microalgae through plastidial oxidative pentose phosphate pathway.
    Xue J; Chen TT; Zheng JW; Balamurugan S; Cai JX; Liu YH; Yang WD; Liu JS; Li HY
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10803-10815. PubMed ID: 30349933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of outdoor cultures on the growth and lipid production of Phaeodactylum tricornutum using closed photobioreactors.
    Santos-Ballardo DU; Rendón-Unceta Mdel C; Rossi S; Vázquez-Gómez R; Hernández-Verdugo S; Valdez-Ortiz A
    World J Microbiol Biotechnol; 2016 Aug; 32(8):128. PubMed ID: 27339309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.
    Zhang H; Zeng R; Chen D; Liu J
    Sci Rep; 2016 Aug; 6():31319. PubMed ID: 27499168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated CO
    Wu S; Gu W; Huang A; Li Y; Kumar M; Lim PE; Huan L; Gao S; Wang G
    Microb Cell Fact; 2019 Sep; 18(1):161. PubMed ID: 31547820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities.
    Remmers IM; Martens DE; Wijffels RH; Lamers PP
    PLoS One; 2017; 12(4):e0175630. PubMed ID: 28403203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.
    Blatti JL; Michaud J; Burkart MD
    Curr Opin Chem Biol; 2013 Jun; 17(3):496-505. PubMed ID: 23683348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum.
    Mus F; Toussaint JP; Cooksey KE; Fields MW; Gerlach R; Peyton BM; Carlson RP
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3625-42. PubMed ID: 23463245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum.
    Yu SJ; Shen XF; Ge HQ; Zheng H; Chu FF; Hu H; Zeng RJ
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6927-6934. PubMed ID: 27260287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa.
    Xue J; Wang L; Zhang L; Balamurugan S; Li DW; Zeng H; Yang WD; Liu JS; Li HY
    Microb Cell Fact; 2016 Jul; 15(1):120. PubMed ID: 27387324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach.
    Poirier I; Pallud M; Kuhn L; Hammann P; Demortière A; Jamali A; Chicher J; Caplat C; Gallon RK; Bertrand M
    Ecotoxicol Environ Saf; 2018 May; 152():78-90. PubMed ID: 29407785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation.
    Xue J; Niu YF; Huang T; Yang WD; Liu JS; Li HY
    Metab Eng; 2015 Jan; 27():1-9. PubMed ID: 25447640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum.
    Levitan O; Dinamarca J; Zelzion E; Gorbunov MY; Falkowski PG
    Plant J; 2015 Dec; 84(5):963-73. PubMed ID: 26473332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of metabolic responses to phosphorus limitation via proteomic analyses in the marine diatom Phaeodactylum tricornutum.
    Feng TY; Yang ZK; Zheng JW; Xie Y; Li DW; Murugan SB; Yang WD; Liu JS; Li HY
    Sci Rep; 2015 May; 5():10373. PubMed ID: 26020491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO
    Huang A; Wu S; Gu W; Li Y; Xie X; Wang G
    BMC Biotechnol; 2019 Jul; 19(1):53. PubMed ID: 31349823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting TOR signaling for enhanced lipid productivity in algae.
    Prioretti L; Carriere F; Field B; Avilan L; Montané MH; Menand B; Gontero B
    Biochimie; 2020 Feb; 169():12-17. PubMed ID: 31265860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation.
    Guarnieri MT; Nag A; Yang S; Pienkos PT
    J Proteomics; 2013 Nov; 93():245-53. PubMed ID: 23748020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.
    Zienkiewicz K; Du ZY; Ma W; Vollheyde K; Benning C
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1269-1281. PubMed ID: 26883557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.