These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27147395)

  • 1. Controllable synthesis of Cu-Ni core-shell nanoparticles and nanowires with tunable magnetic properties.
    Guo H; Jin J; Chen Y; Liu X; Zeng D; Wang L; Peng DL
    Chem Commun (Camb); 2016 May; 52(42):6918-21. PubMed ID: 27147395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu@Ni core-shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films.
    Fang Y; Zeng X; Chen Y; Ji M; Zheng H; Xu W; Peng DL
    Nanotechnology; 2020 Aug; 31(35):355601. PubMed ID: 32554887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: controllable one-pot synthesis and solution processing to transparent flexible heaters.
    Chen J; Chen J; Li Y; Zhou W; Feng X; Huang Q; Zheng JG; Liu R; Ma Y; Huang W
    Nanoscale; 2015 Oct; 7(40):16874-9. PubMed ID: 26411899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injection synthesis of Ni-Cu@Au-Cu nanowires with tunable magnetic and plasmonic properties.
    Zeng D; Chen Y; Lu A; Li M; Guo H; Wang J; Peng DL
    Chem Commun (Camb); 2013 Dec; 49(98):11545-7. PubMed ID: 24177016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Synthesis, Characterization and Magnetic Properties of Core–Shell Cu@M (M = Co or Ni) Nanowires.
    Yao S; Li B; Jing M; Tang H; Wu X; Hou J; Shen X
    J Nanosci Nanotechnol; 2017 Jan; 17(1):661-65. PubMed ID: 29630329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions.
    Guo H; Chen Y; Ping H; Jin J; Peng DL
    Nanoscale; 2013 Mar; 5(6):2394-402. PubMed ID: 23400550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles.
    Hennes M; Lotnyk A; Mayr SG
    Beilstein J Nanotechnol; 2014; 5():466-75. PubMed ID: 24778973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells.
    Shi YL; Asefa T
    Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Cu-Ni (core-shell) nanoparticles in a one-pot reaction under microwave irradiation.
    Yamauchi T; Tsukahara Y; Sakata T; Mori H; Yanagida T; Kawai T; Wada Y
    Nanoscale; 2010 Apr; 2(4):515-23. PubMed ID: 20644753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect.
    Lai M; Mubeen S; Chartuprayoon N; Mulchandani A; Deshusses MA; Myung NV
    Nanotechnology; 2010 Jul; 21(29):295601. PubMed ID: 20585175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controllable synthesis of ferromagnetic-antiferromagnetic core-shell NWs with tunable magnetic properties.
    Irfan M; Wang CJ; Khan U; Li WJ; Zhang XM; Kong WJ; Liu P; Wan CH; Liu YW; Han XF
    Nanoscale; 2017 May; 9(17):5694-5700. PubMed ID: 28426070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch.
    Jin M; Zhang H; Wang J; Zhong X; Lu N; Li Z; Xie Z; Kim MJ; Xia Y
    ACS Nano; 2012 Mar; 6(3):2566-73. PubMed ID: 22303890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties.
    Wang X; Dong L; Zhang B; Yu M; Liu J
    Nanotechnology; 2016 Mar; 27(12):125602. PubMed ID: 26890585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.
    Zhang S; Hao Y; Su D; Doan-Nguyen VV; Wu Y; Li J; Sun S; Murray CB
    J Am Chem Soc; 2014 Nov; 136(45):15921-4. PubMed ID: 25350678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles.
    Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2009 May; 3(5):1077-84. PubMed ID: 19361203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles.
    Seto T; Akinaga H; Takano F; Koga K; Orii T; Hirasawa M
    J Phys Chem B; 2005 Jul; 109(28):13403-5. PubMed ID: 16852675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicomponent (Ce, Cu, Ni) oxides with cage and core-shell structures: tunable fabrication and enhanced CO oxidation activity.
    Liu W; Tang K; Lin M; June LT; Bai SQ; Young DJ; Li X; Yang YZ; Hor TS
    Nanoscale; 2016 May; 8(18):9521-6. PubMed ID: 27116942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of core-shell NaBH4@M (M = Co, Cu, Fe, Ni, Sn) nanoparticles leading to various morphologies and hydrogen storage properties.
    Christian M; Aguey-Zinsou KF
    Chem Commun (Camb); 2013 Aug; 49(60):6794-6. PubMed ID: 23788276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.