These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Cheng X; Xiao X; Chou KC Gene; 2017 Sep; 628():315-321. PubMed ID: 28728979 [TBL] [Abstract][Full Text] [Related]
5. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Liu Z; Xiao X; Qiu WR; Chou KC Anal Biochem; 2015 Apr; 474():69-77. PubMed ID: 25596338 [TBL] [Abstract][Full Text] [Related]
6. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. Jia J; Liu Z; Xiao X; Liu B; Chou KC J Theor Biol; 2015 Jul; 377():47-56. PubMed ID: 25908206 [TBL] [Abstract][Full Text] [Related]
7. PseUI: Pseudouridine sites identification based on RNA sequence information. He J; Fang T; Zhang Z; Huang B; Zhu X; Xiong Y BMC Bioinformatics; 2018 Aug; 19(1):306. PubMed ID: 30157750 [TBL] [Abstract][Full Text] [Related]
8. iRNA-2methyl: Identify RNA 2'-O-methylation Sites by Incorporating Sequence-Coupled Effects into General PseKNC and Ensemble Classifier. Qiu WR; Jiang SY; Sun BQ; Xiao X; Cheng X; Chou KC Med Chem; 2017; 13(8):734-743. PubMed ID: 28641529 [TBL] [Abstract][Full Text] [Related]
9. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. Jia J; Liu Z; Xiao X; Liu B; Chou KC J Theor Biol; 2016 Apr; 394():223-230. PubMed ID: 26807806 [TBL] [Abstract][Full Text] [Related]
10. iPhos-PseEvo: Identifying Human Phosphorylated Proteins by Incorporating Evolutionary Information into General PseAAC via Grey System Theory. Qiu WR; Sun BQ; Xiao X; Xu D; Chou KC Mol Inform; 2017 May; 36(5-6):. PubMed ID: 28488814 [TBL] [Abstract][Full Text] [Related]
11. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos game representation into PseAAC. Jia J; Li X; Qiu W; Xiao X; Chou KC J Theor Biol; 2019 Jan; 460():195-203. PubMed ID: 30312687 [TBL] [Abstract][Full Text] [Related]
12. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Jia J; Liu Z; Xiao X; Liu B; Chou KC Anal Biochem; 2016 Mar; 497():48-56. PubMed ID: 26723495 [TBL] [Abstract][Full Text] [Related]
13. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. Liu B; Xu J; Lan X; Xu R; Zhou J; Wang X; Chou KC PLoS One; 2014; 9(9):e106691. PubMed ID: 25184541 [TBL] [Abstract][Full Text] [Related]
14. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Qiu WR; Sun BQ; Xiao X; Xu ZC; Jia JH; Chou KC Genomics; 2018 Sep; 110(5):239-246. PubMed ID: 29107015 [TBL] [Abstract][Full Text] [Related]
15. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Cheng X; Xiao X; Chou KC Bioinformatics; 2018 May; 34(9):1448-1456. PubMed ID: 29106451 [TBL] [Abstract][Full Text] [Related]
16. iSuc-PseAAC: predicting lysine succinylation in proteins by incorporating peptide position-specific propensity. Xu Y; Ding YX; Ding J; Lei YH; Wu LY; Deng NY Sci Rep; 2015 Jun; 5():10184. PubMed ID: 26084794 [TBL] [Abstract][Full Text] [Related]
17. iDNA6mA-PseKNC: Identifying DNA N Feng P; Yang H; Ding H; Lin H; Chen W; Chou KC Genomics; 2019 Jan; 111(1):96-102. PubMed ID: 29360500 [TBL] [Abstract][Full Text] [Related]
18. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Jia J; Liu Z; Xiao X; Liu B; Chou KC Oncotarget; 2016 Jun; 7(23):34558-70. PubMed ID: 27153555 [TBL] [Abstract][Full Text] [Related]
19. iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Qiu WR; Xiao X; Xu ZC; Chou KC Oncotarget; 2016 Aug; 7(32):51270-51283. PubMed ID: 27323404 [TBL] [Abstract][Full Text] [Related]
20. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. Jia J; Liu Z; Xiao X; Liu B; Chou KC J Biomol Struct Dyn; 2016 Sep; 34(9):1946-61. PubMed ID: 26375780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]