These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27147590)

  • 1. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system.
    Montgomery KL; Iyer SM; Christensen AJ; Deisseroth K; Delp SL
    Sci Transl Med; 2016 May; 8(337):337rv5. PubMed ID: 27147590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetics of the Spinal Cord: Use of Channelrhodopsin Proteins for Interrogation of Spinal Cord Circuits.
    Rahman MH; Nam Y; Kim JH; Lee WH; Suk K
    Curr Protein Pept Sci; 2018; 19(7):714-724. PubMed ID: 29298648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New era of optogenetics: from the central to peripheral nervous system.
    Xu X; Mee T; Jia X
    Crit Rev Biochem Mol Biol; 2020 Feb; 55(1):1-16. PubMed ID: 32070147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic manipulation of ENS - The brain in the gut.
    Wang W
    Life Sci; 2018 Jan; 192():18-25. PubMed ID: 29155296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical cuff for optogenetic control of the peripheral nervous system.
    Michoud F; Sottas L; Browne LE; Asboth L; Latremoliere A; Sakuma M; Courtine G; Woolf CJ; Lacour SP
    J Neural Eng; 2018 Feb; 15(1):015002. PubMed ID: 28978778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetics for controlling seizure circuits for translational approaches.
    Ledri M; Andersson M; Wickham J; Kokaia M
    Neurobiol Dis; 2023 Aug; 184():106234. PubMed ID: 37479090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidural optogenetics for controlled analgesia.
    Bonin RP; Wang F; Desrochers-Couture M; Ga Secka A; Boulanger ME; Côté DC; De Koninck Y
    Mol Pain; 2016; 12():. PubMed ID: 27030718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the Neural Circuitry for Pain Modulation and Chronic Pain: Insights from Optogenetics.
    Guo F; Du Y; Qu FH; Lin SD; Chen Z; Zhang SH
    Neurosci Bull; 2022 Apr; 38(4):440-452. PubMed ID: 35249185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic neuromodulation: new tools for monitoring and breaking neural circuits.
    Knafo S; Wyart C
    Ann Phys Rehabil Med; 2015 Sep; 58(4):259-264. PubMed ID: 26143950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects.
    Bloch A; Probst A; Bissig H; Adams H; Tolnay M
    Neuropathol Appl Neurobiol; 2006 Jun; 32(3):284-95. PubMed ID: 16640647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord.
    Mondello SE; Pedigo BD; Sunshine MD; Fischedick AE; Horner PJ; Moritz CT
    Exp Neurol; 2021 Jan; 335():113480. PubMed ID: 32991934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic Peripheral Nerve Immunogenicity.
    Maimon BE; Diaz M; Revol ECM; Schneider AM; Leaker B; Varela CE; Srinivasan S; Weber MB; Herr HM
    Sci Rep; 2018 Sep; 8(1):14076. PubMed ID: 30232391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of neuropeptide Y immunoreactivity in the central and peripheral nervous systems of amphioxus (Branchiostoma lanceolatum Pallas).
    Castro A; Manso MJ; Anadón R
    J Comp Neurol; 2003 Jun; 461(3):350-61. PubMed ID: 12746873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination.
    Schumacher M; Guennoun R; Robert F; Carelli C; Gago N; Ghoumari A; Gonzalez Deniselle MC; Gonzalez SL; Ibanez C; Labombarda F; Coirini H; Baulieu EE; De Nicola AF
    Growth Horm IGF Res; 2004 Jun; 14 Suppl A():S18-33. PubMed ID: 15135772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetics enlightens neuroscience drug discovery.
    Song C; Knöpfel T
    Nat Rev Drug Discov; 2016 Feb; 15(2):97-109. PubMed ID: 26612666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetics unleashed.
    Anikeeva P
    Nat Biotechnol; 2016 Jan; 34(1):43-4. PubMed ID: 26744980
    [No Abstract]   [Full Text] [Related]  

  • 19. Optogenetic exploration and modulation of pain processing.
    Xie YF; Wang J; Bonin RP
    Exp Neurol; 2018 Aug; 306():117-121. PubMed ID: 29729250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.
    Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.