These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 27147643)
1. Poly(ether imide)-silica hybrid coatings for tunable corrosion behavior and improved biocompatibility of magnesium implants. Kang MH; Jang TS; Jung HD; Kim SM; Kim HE; Koh YH; Song J Biomed Mater; 2016 May; 11(3):035003. PubMed ID: 27147643 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Kang MH; Lee H; Jang TS; Seong YJ; Kim HE; Koh YH; Song J; Jung HD Acta Biomater; 2019 Jan; 84():453-467. PubMed ID: 30500444 [TBL] [Abstract][Full Text] [Related]
3. Use of a poly(ether imide) coating to improve corrosion resistance and biocompatibility of magnesium (Mg) implant for orthopedic applications. Kim SB; Jo JH; Lee SM; Kim HE; Shin KH; Koh YH J Biomed Mater Res A; 2013 Jun; 101(6):1708-15. PubMed ID: 23184807 [TBL] [Abstract][Full Text] [Related]
4. Hydroxyapatite (HA)/poly-L-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications. Diez M; Kang MH; Kim SM; Kim HE; Song J J Mater Sci Mater Med; 2016 Feb; 27(2):34. PubMed ID: 26704551 [TBL] [Abstract][Full Text] [Related]
5. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates. Johnson I; Wang SM; Silken C; Liu H Acta Biomater; 2016 May; 36():332-49. PubMed ID: 27006335 [TBL] [Abstract][Full Text] [Related]
6. In vivo assessment of a new multifunctional coating architecture for improved Mg alloy biocompatibility. Gomes PS; Zomorodian A; Kwiatkowski L; Lutze R; Balkowiec A; Colaço B; Pinheiro V; Fernandes JC; Montemor MF; Fernandes MH Biomed Mater; 2016 Aug; 11(4):045007. PubMed ID: 27508333 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Osteocompatibility and Enhanced Biocorrosion Resistance of Diammonium Hydrogen Phosphate-Pretreated/Poly(ether imide) Coatings on Magnesium for Orthopedic Application. Yang Y; Zhou J; Chen Q; Detsch R; Cui X; Jin G; Virtanen S; Boccaccini AR ACS Appl Mater Interfaces; 2019 Aug; 11(33):29667-29680. PubMed ID: 31335111 [TBL] [Abstract][Full Text] [Related]
8. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion. Catt K; Li H; Cui XT Acta Biomater; 2017 Jan; 48():530-540. PubMed ID: 27867108 [TBL] [Abstract][Full Text] [Related]
9. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Abdal-Hay A; Hasan A; Kim YK; Lee MH; Hamdy AS; Khalil KA Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1232-41. PubMed ID: 26478426 [TBL] [Abstract][Full Text] [Related]
10. Nano-to-Submicron Hydroxyapatite Coatings for Magnesium-based Bioresorbable Implants - Deposition, Characterization, Degradation, Mechanical Properties, and Cytocompatibility. Tian Q; Lin J; Rivera-Castaneda L; Tsanhani A; Dunn ZS; Rodriguez A; Aslani A; Liu H Sci Rep; 2019 Jan; 9(1):810. PubMed ID: 30692582 [TBL] [Abstract][Full Text] [Related]
11. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Zomorodian A; Garcia MP; Moura e Silva T; Fernandes JC; Fernandes MH; Montemor MF Acta Biomater; 2013 Nov; 9(10):8660-70. PubMed ID: 23454214 [TBL] [Abstract][Full Text] [Related]
12. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Ji XJ; Gao L; Liu JC; Wang J; Cheng Q; Li JP; Li SQ; Zhi KQ; Zeng RC; Wang ZL Colloids Surf B Biointerfaces; 2019 Jul; 179():429-436. PubMed ID: 31005002 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. Kim SM; Jo JH; Lee SM; Kang MH; Kim HE; Estrin Y; Lee JH; Lee JW; Koh YH J Biomed Mater Res A; 2014 Feb; 102(2):429-41. PubMed ID: 23533169 [TBL] [Abstract][Full Text] [Related]
14. Polydopamine mediated assembly of hydroxyapatite nanoparticles and bone morphogenetic protein-2 on magnesium alloys for enhanced corrosion resistance and bone regeneration. Jiang Y; Wang B; Jia Z; Lu X; Fang L; Wang K; Ren F J Biomed Mater Res A; 2017 Oct; 105(10):2750-2761. PubMed ID: 28608421 [TBL] [Abstract][Full Text] [Related]
15. Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings. Tamay DG; Gokyer S; Schmidt J; Vladescu A; Yilgor Huri P; Hasirci V; Hasirci N ACS Appl Mater Interfaces; 2022 Jan; 14(1):104-122. PubMed ID: 34958199 [TBL] [Abstract][Full Text] [Related]
16. Green Tea Polyphenol Induced Mg Zhang B; Yao R; Li L; Wang Y; Luo R; Yang L; Wang Y ACS Appl Mater Interfaces; 2019 Nov; 11(44):41165-41177. PubMed ID: 31651138 [TBL] [Abstract][Full Text] [Related]
17. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy. Tian P; Xu D; Liu X Colloids Surf B Biointerfaces; 2016 May; 141():327-337. PubMed ID: 26874118 [TBL] [Abstract][Full Text] [Related]
18. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance. Xu W; Yagoshi K; Koga Y; Sasaki M; Niidome T Colloids Surf B Biointerfaces; 2018 Mar; 163():100-106. PubMed ID: 29284158 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Agarwal S; Curtin J; Duffy B; Jaiswal S Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097 [TBL] [Abstract][Full Text] [Related]