BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27147677)

  • 1. Amorphous polyphosphate/amorphous calcium carbonate implant material with enhanced bone healing efficacy in a critical-size defect in rats.
    Wang X; Ackermann M; Wang S; Tolba E; Neufurth M; Feng Q; Schröder HC; Müller WE
    Biomed Mater; 2016 May; 11(3):035005. PubMed ID: 27147677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo.
    Müller WEG; Tolba E; Ackermann M; Neufurth M; Wang S; Feng Q; Schröder HC; Wang X
    Acta Biomater; 2017 Mar; 50():89-101. PubMed ID: 28017868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro.
    Müller WEG; Tolba E; Schröder HC; Muñoz-Espí R; Diehl-Seifert B; Wang X
    Acta Biomater; 2016 Feb; 31():358-367. PubMed ID: 26654764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study.
    Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate.
    Müller WEG; Ackermann M; Al-Nawas B; Righesso LAR; Muñoz-Espí R; Tolba E; Neufurth M; Schröder HC; Wang X
    Acta Biomater; 2020 Dec; 118():233-247. PubMed ID: 33075552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.
    Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS
    J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomimetic approach to ameliorate dental hypersensitivity by amorphous polyphosphate microparticles.
    Müller WE; Neufurth M; Tolba E; Wang S; Geurtsen W; Feng Q; Schröder HC; Wang X
    Dent Mater; 2016 Jun; 32(6):775-83. PubMed ID: 27059773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit.
    Wu X; Zheng S; Ye Y; Wu Y; Lin K; Su J
    Biomater Sci; 2018 May; 6(5):1147-1158. PubMed ID: 29561031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA.
    Lin L; Gao H; Dong Y
    J Mater Sci Mater Med; 2015 Jan; 26(1):5327. PubMed ID: 25577209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation.
    Chang HC; Yang C; Feng F; Lin FH; Wang CH; Chang PC
    J Formos Med Assoc; 2017 Dec; 116(12):973-981. PubMed ID: 28256366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Experimental Study on Guided Bone Regeneration Using a Polylactide-co-glycolide Membrane-Immobilized Conditioned Medium.
    Tsuchiya S; Ohmori M; Hara K; Fujio M; Ikeno M; Hibi H; Ueda M
    Int J Oral Maxillofac Implants; 2015; 30(5):1175-86. PubMed ID: 26394357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro.
    Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive and biodegradable silica biomaterial for bone regeneration.
    Wang S; Wang X; Draenert FG; Albert O; Schröder HC; Mailänder V; Mitov G; Müller WE
    Bone; 2014 Oct; 67():292-304. PubMed ID: 25088401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.
    Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB
    Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.
    Sicchieri LG; Crippa GE; de Oliveira PT; Beloti MM; Rosa AL
    J Tissue Eng Regen Med; 2012 Feb; 6(2):155-62. PubMed ID: 21446054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds.
    Popp JR; Laflin KE; Love BJ; Goldstein AS
    J Tissue Eng Regen Med; 2012 Jan; 6(1):12-20. PubMed ID: 21312335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.