BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27148002)

  • 1. Tactile Object Familiarity in the Blind Brain Reveals the Supramodal Perceptual-Mnemonic Nature of the Perirhinal Cortex.
    Cacciamani L; Likova LT
    Front Hum Neurosci; 2016; 10():92. PubMed ID: 27148002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memory-guided drawing training increases Granger causal influences from the perirhinal cortex to V1 in the blind.
    Cacciamani L; Likova LT
    Neurobiol Learn Mem; 2017 May; 141():101-107. PubMed ID: 28347878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-Related Changes in Perirhinal Cortex Sensitivity to Configuration and Part Familiarity and Connectivity to Visual Cortex.
    Cacciamani L; Wager E; Peterson MA; Scalf PE
    Front Aging Neurosci; 2017; 9():291. PubMed ID: 28966591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired perceptual integration and memory for unitized representations are associated with perirhinal cortex atrophy in Alzheimer's disease.
    Delhaye E; Bahri MA; Salmon E; Bastin C
    Neurobiol Aging; 2019 Jan; 73():135-144. PubMed ID: 30342274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The perirhinal cortex modulates V2 activity in response to the agreement between part familiarity and configuration familiarity.
    Peterson MA; Cacciamani L; Barense MD; Scalf PE
    Hippocampus; 2012 Oct; 22(10):1965-77. PubMed ID: 22987675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perirhinal cortex tracks degree of recent as well as cumulative lifetime experience with object concepts.
    Duke D; Martin CB; Bowles B; McRae K; Köhler S
    Cortex; 2017 Apr; 89():61-70. PubMed ID: 28236751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perirhinal cortex automatically tracks multiple types of familiarity regardless of task-relevance.
    Yang H; McRae K; Köhler S
    Neuropsychologia; 2023 Aug; 187():108600. PubMed ID: 37257689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct familiarity-based response patterns for faces and buildings in perirhinal and parahippocampal cortex.
    Martin CB; McLean DA; O'Neil EB; Köhler S
    J Neurosci; 2013 Jun; 33(26):10915-23. PubMed ID: 23804111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bidirectional Modulation of Recognition Memory.
    Ho JW; Poeta DL; Jacobson TK; Zolnik TA; Neske GT; Connors BW; Burwell RD
    J Neurosci; 2015 Sep; 35(39):13323-35. PubMed ID: 26424881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision matters for shape representation: Evidence from sculpturing and drawing in the blind.
    Tian S; Chen L; Wang X; Li G; Fu Z; Ji Y; Lu J; Wang X; Shan S; Bi Y
    Cortex; 2024 May; 174():241-255. PubMed ID: 38582629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: a fMRI study of angle discrimination in sighted and congenitally blind individuals.
    Bonino D; Ricciardi E; Bernardi G; Sani L; Gentili C; Vecchi T; Pietrini P
    Neuropsychologia; 2015 Feb; 68():59-70. PubMed ID: 25575449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced tactile encoding and memory recognition in congenital blindness.
    D'Angiulli A; Waraich P
    Int J Rehabil Res; 2002 Jun; 25(2):143-5. PubMed ID: 12021601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The perirhinal cortex and recognition memory interference.
    Watson HC; Lee AC
    J Neurosci; 2013 Feb; 33(9):4192-200. PubMed ID: 23447626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning face perception without vision: Rebound learning effect and hemispheric differences in congenital vs late-onset blindness.
    Likova LT; Mei M; Mineff KN; Nicholas SC
    IS&T Int Symp Electron Imaging; 2019 Jan; 2019():2371-23713. PubMed ID: 31633079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairments in visual discrimination after perirhinal cortex lesions: testing 'declarative' vs. 'perceptual-mnemonic' views of perirhinal cortex function.
    Bussey TJ; Saksida LM; Murray EA
    Eur J Neurosci; 2003 Feb; 17(3):649-60. PubMed ID: 12581183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile exploration of virtual objects for blind and sighted people: the role of beta 1 EEG band in sensory substitution and supramodal mental mapping.
    Campus C; Brayda L; De Carli F; Chellali R; Famà F; Bruzzo C; Lucagrossi L; Rodriguez G
    J Neurophysiol; 2012 May; 107(10):2713-29. PubMed ID: 22338024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conceptual and perceptual novelty effects in human medial temporal cortex.
    O'Kane G; Insler RZ; Wagner AD
    Hippocampus; 2005; 15(3):326-32. PubMed ID: 15490462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of blind and sighted participants' performance in a letter recognition working memory task.
    Bliss I; Kujala T; Hämäläinen H
    Brain Res Cogn Brain Res; 2004 Feb; 18(3):273-7. PubMed ID: 14741313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects.
    McLelland VC; Chan D; Ferber S; Barense MD
    Front Hum Neurosci; 2014; 8():117. PubMed ID: 24624075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details.
    Staresina BP; Duncan KD; Davachi L
    J Neurosci; 2011 Jun; 31(24):8739-47. PubMed ID: 21677158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.