BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27148032)

  • 1. Theoretical Analysis of Transcranial Magneto-Acoustical Stimulation with Hodgkin-Huxley Neuron Model.
    Yuan Y; Chen Y; Li X
    Front Comput Neurosci; 2016; 10():35. PubMed ID: 27148032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Phase-Locking Analysis of Neuronal Firing Rhythms with Transcranial Magneto-Acoustical Stimulation Based on the Hodgkin-Huxley Neuron Model.
    Yuan Y; Pang N; Chen Y; Wang Y; Li X
    Front Comput Neurosci; 2017; 11():1. PubMed ID: 28163679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of neuronal spike-frequency adaptation with transcranial magneto-acoustical stimulation].
    Yuan Y; Pang N; Chen Y; Sun H; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2017 Dec; 34(6):934-941. PubMed ID: 29761991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical analysis of effects of transcranial magneto-acoustical stimulation on neuronal spike-frequency adaptation.
    Zhao S; Liu D; Liu M; Luo X; Yuan Y
    BMC Neurosci; 2022 May; 23(1):26. PubMed ID: 35501687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unidirectional Synchronization of Hodgkin-Huxley Neurons With Prescribed Performance Under Transcranial Magneto-Acoustical Simulation.
    Liu D; Zhao S; Luo X; Yuan Y
    Front Neurosci; 2019; 13():1061. PubMed ID: 31680807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation study of transcranial magnetoacoustic stimulation of the basal ganglia thalamic neural network to improve pathological beta oscillations in Parkinson's disease.
    Zhang Y; Zhang H; Xu T; Liu J; Mu J; Chen R; Yang J; Wang P; Jian X
    Comput Methods Programs Biomed; 2024 Jun; 254():108297. PubMed ID: 38905990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Transcranial Magnetoacoustic Stimulation Parameters on the Basal Ganglia-Thalamus Neural Network in Parkinson's Disease.
    Zhang Y; Zhang M; Ling Z; Wang P; Jian X
    Front Neurosci; 2021; 15():761720. PubMed ID: 34733136
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative Study of Transcranial Magneto-Acoustic Stimulation and Transcranial Ultrasound Stimulation of Motor Cortex.
    Wang H; Zhou X; Cui D; Liu R; Tan R; Wang X; Liu Z; Yin T
    Front Behav Neurosci; 2019; 13():241. PubMed ID: 31680896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Transcranial Electrical Simulation for Living Mice Based on Magneto-Acoustic Effect.
    Zhou X; Liu S; Wang Y; Yin T; Yang Z; Liu Z
    Front Neurosci; 2019; 13():1342. PubMed ID: 31920507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial magneto-acoustic stimulation improves spatial memory and modulates hippocampal neural oscillations in a mouse model of Alzheimer's disease.
    Zhang S; Guo Z; Xu Y; Mi J; Liu J; Li Z; Xie X; Xu G
    Front Neurosci; 2024; 18():1313639. PubMed ID: 38384480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic responses of neurons in different states under magnetic field stimulation.
    Yang H; Wang H; Guo L; Xu G
    J Comput Neurosci; 2022 Feb; 50(1):109-120. PubMed ID: 34532810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Modeling of Ultrasonic Subthalamic Nucleus Stimulation.
    Tarnaud T; Joseph W; Martens L; Tanghe E
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1155-1164. PubMed ID: 30188811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Noninvasive Deep Brain Stimulation Method via Temporal-Spatial Interference Magneto-Acoustic Effect: Simulation and Experimental Validation.
    Liu R; Ma R; Liu X; Zhou X; Wang X; Yin T; Liu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Aug; 69(8):2474-2483. PubMed ID: 35776814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice.
    Ma X; Wang X; Zhu K; Ma R; Chu F; Liu X; Zhang S; Yin T; Zhou X; Liu Z
    IEEE Trans Biomed Eng; 2024 May; 71(5):1531-1541. PubMed ID: 38117631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling ultrasound modulation of neural function in a single cell.
    Badawe HM; El Hassan RH; Khraiche ML
    Heliyon; 2023 Dec; 9(12):e22522. PubMed ID: 38046165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcranial Alternating Current Stimulation Attenuates Neuronal Adaptation.
    Kar K; Duijnhouwer J; Krekelberg B
    J Neurosci; 2017 Mar; 37(9):2325-2335. PubMed ID: 28137971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation.
    Mahmud M; Vassanelli S
    Front Neurosci; 2016; 10():62. PubMed ID: 26941602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of transient receptor potential-like current on the firing pattern of action potentials in the Hodgkin-Huxley neuron during exposure to sinusoidal external voltage.
    Chen BS; Lo YC; Lius YC; Wu SN
    Chin J Physiol; 2010 Dec; 53(6):423-9. PubMed ID: 21793354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):2007-26. PubMed ID: 9114251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspike interval statistics in the stochastic Hodgkin-Huxley model: coexistence of gamma frequency bursts and highly irregular firing.
    Rowat P
    Neural Comput; 2007 May; 19(5):1215-50. PubMed ID: 17381265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.