These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27148036)

  • 1. A Diffusion Approximation and Numerical Methods for Adaptive Neuron Models with Stochastic Inputs.
    Rosenbaum R
    Front Comput Neurosci; 2016; 10():39. PubMed ID: 27148036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite volume method for stochastic integrate-and-fire models.
    Marpeau F; Barua A; Josić K
    J Comput Neurosci; 2009 Jun; 26(3):445-57. PubMed ID: 19067147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise.
    Hertäg L; Durstewitz D; Brunel N
    Front Comput Neurosci; 2014; 8():116. PubMed ID: 25278872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite volume and asymptotic methods for stochastic neuron models with correlated inputs.
    Rosenbaum R; Marpeau F; Ma J; Barua A; Josić K
    J Math Biol; 2012 Jul; 65(1):1-34. PubMed ID: 21717104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of light scattering models for diffuse optical tomography.
    González-Rodríguez P; Kim AD
    Opt Express; 2009 May; 17(11):8756-74. PubMed ID: 19466125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation.
    Sun W; Feng J; Su J; Liang Y
    Chaos; 2022 Mar; 32(3):033131. PubMed ID: 35364842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.
    Burkitt AN
    Biol Cybern; 2006 Jul; 95(1):1-19. PubMed ID: 16622699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of moments and correlations in nonrenewal escape-time processes.
    Braun W; Thul R; Longtin A
    Phys Rev E; 2017 May; 95(5-1):052127. PubMed ID: 28618562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D; Reich S; Opper M
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions.
    Er GK; Iu VP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):067701. PubMed ID: 23005249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fokker-Planck approach to the pulse packet propagation in synfire chain.
    Câteau H; Fukai T
    Neural Netw; 2001; 14(6-7):675-85. PubMed ID: 11665762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the evaluation of firing densities for periodically driven neuron models.
    Buonocore A; Caputo L; Pirozzi E
    Math Biosci; 2008; 214(1-2):122-33. PubMed ID: 18374954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical and simulation results for stochastic Fitzhugh-Nagumo neurons and neural networks.
    Tuckwell HC; Rodriguez R
    J Comput Neurosci; 1998 Mar; 5(1):91-113. PubMed ID: 9540051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the accuracy of generalized Fokker-Planck transport equations in tissue optics.
    Phillips KG; Lancellotti C
    Appl Opt; 2009 Jan; 48(2):229-41. PubMed ID: 19137033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation.
    Magdziarz M; Weron A; Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016708. PubMed ID: 17358293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fokker-Planck approach to the study of robustness in gene expression.
    Degond P; Herda M; Mirrahimi S
    Math Biosci Eng; 2020 Sep; 17(6):6459-6486. PubMed ID: 33378862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons.
    Richardson MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051918. PubMed ID: 15244858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.