BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 27148190)

  • 1. Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens.
    Singh A; Del Poeta M
    Front Microbiol; 2016; 7():501. PubMed ID: 27148190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics.
    Sullards MC; Allegood JC; Kelly S; Wang E; Haynes CA; Park H; Chen Y; Merrill AH
    Methods Enzymol; 2007; 432():83-115. PubMed ID: 17954214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of lipids of the stratum corneum by high performance thin layer chromatography and mass spectrometry.
    Jamin EL; Jacques C; Jourdes L; Tabet JC; Borotra N; Bessou-Touya S; Debrauwer L; Duplan H
    Eur J Mass Spectrom (Chichester); 2019 Jun; 25(3):278-290. PubMed ID: 30545248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosphingolipid structural analysis and glycosphingolipidomics.
    Levery SB
    Methods Enzymol; 2005; 405():300-69. PubMed ID: 16413319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.
    Bielawski J; Pierce JS; Snider J; Rembiesa B; Szulc ZM; Bielawska A
    Methods Mol Biol; 2009; 579():443-67. PubMed ID: 19763489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.
    Canela N; Herrero P; Mariné S; Nadal P; Ras MR; Rodríguez MÁ; Arola L
    J Chromatogr A; 2016 Jan; 1428():16-38. PubMed ID: 26275862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lipidomic platform establishment for structural identification of skin ceramides with non-hydroxyacyl chains.
    Shin JH; Shon JC; Lee K; Kim S; Park CS; Choi EH; Lee CH; Lee HS; Liu KH
    Anal Bioanal Chem; 2014 Mar; 406(7):1917-32. PubMed ID: 24458481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids.
    Haynes CA; Allegood JC; Park H; Sullards MC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Sep; 877(26):2696-708. PubMed ID: 19147416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometric Analysis of Bioactive Sphingolipids in Fungi.
    Singh A; Del Poeta M
    Methods Mol Biol; 2021; 2306():239-255. PubMed ID: 33954951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Spectrometry-Based Profiling of Plant Sphingolipids from Typical and Aberrant Metabolism.
    Cahoon RE; Solis AG; Markham JE; Cahoon EB
    Methods Mol Biol; 2021; 2295():157-177. PubMed ID: 34047977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ceramide lipids in alive and thermally stressed mussels: an investigation by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry.
    Facchini L; Losito I; Cataldi TR; Palmisano F
    J Mass Spectrom; 2016 Sep; 51(9):768-81. PubMed ID: 27479706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry.
    Merrill AH; Sullards MC; Allegood JC; Kelly S; Wang E
    Methods; 2005 Jun; 36(2):207-24. PubMed ID: 15894491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detailed Structural Characterization of Sphingolipids via 193 nm Ultraviolet Photodissociation and Ultra High Resolution Tandem Mass Spectrometry.
    Ryan E; Nguyen CQN; Shiea C; Reid GE
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1406-1419. PubMed ID: 28455688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li+ adduct ions.
    Levery SB; Toledo MS; Doong RL; Straus AH; Takahashi HK
    Rapid Commun Mass Spectrom; 2000; 14(7):551-63. PubMed ID: 10775088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceramide profiling of complex lipid mixtures by electrospray ionization mass spectrometry.
    Gu M; Kerwin JL; Watts JD; Aebersold R
    Anal Biochem; 1997 Jan; 244(2):347-56. PubMed ID: 9025952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scaled human serum sphingolipid profiling by using reversed-phase liquid chromatography coupled with dynamic multiple reaction monitoring of mass spectrometry: method development and application in hepatocellular carcinoma.
    Li J; Hu C; Zhao X; Dai W; Chen S; Lu X; Xu G
    J Chromatogr A; 2013 Dec; 1320():103-10. PubMed ID: 24210299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of sphingosine 1-phosphate, ceramides, and other bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry.
    Sullards MC; Merrill AH
    Sci STKE; 2001 Jan; 2001(67):pl1. PubMed ID: 11752637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput and Comprehensive Lipidomic Analysis Using Ultrahigh-Performance Supercritical Fluid Chromatography-Mass Spectrometry.
    Lísa M; Holčapek M
    Anal Chem; 2015 Jul; 87(14):7187-95. PubMed ID: 26095628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the Sphingolipid
    Wigger D; Gulbins E; Kleuser B; Schumacher F
    Front Cell Dev Biol; 2019; 7():210. PubMed ID: 31632963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of 1-Deoxysphingoid Bases and Their
    Wan J; Li J; Bandyopadhyay S; Kelly SL; Xiang Y; Zhang J; Merrill AH; Duan J
    J Agric Food Chem; 2019 Nov; 67(46):12953-12961. PubMed ID: 31638789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.