These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
640 related articles for article (PubMed ID: 27148408)
1. A machine learning correction for DFT non-covalent interactions based on the S22, S66 and X40 benchmark databases. Gao T; Li H; Li W; Li L; Fang C; Li H; Hu L; Lu Y; Su ZM J Cheminform; 2016; 8():24. PubMed ID: 27148408 [TBL] [Abstract][Full Text] [Related]
2. Efficient Corrections for DFT Noncovalent Interactions Based on Ensemble Learning Models. Li W; Miao W; Cui J; Fang C; Su S; Li H; Hu L; Lu Y; Chen G J Chem Inf Model; 2019 May; 59(5):1849-1857. PubMed ID: 30912940 [TBL] [Abstract][Full Text] [Related]
3. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
4. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. Kruse H; Grimme S J Chem Phys; 2012 Apr; 136(15):154101. PubMed ID: 22519309 [TBL] [Abstract][Full Text] [Related]
5. Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set. Flick JC; Kosenkov D; Hohenstein EG; Sherrill CD; Slipchenko LV J Chem Theory Comput; 2012 Aug; 8(8):2835-43. PubMed ID: 26592124 [TBL] [Abstract][Full Text] [Related]
6. Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. DiLabio GA; Johnson ER; Otero-de-la-Roza A Phys Chem Chem Phys; 2013 Aug; 15(31):12821-8. PubMed ID: 23803877 [TBL] [Abstract][Full Text] [Related]
7. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
8. Parameterization of a B3LYP specific correction for non-covalent interactions and basis set superposition error on a gigantic dataset of CCSD(T) quality non-covalent interaction energies. Schneebeli ST; Bochevarov AD; Friesner RA J Chem Theory Comput; 2011 Mar; 7(3):658-668. PubMed ID: 22058661 [TBL] [Abstract][Full Text] [Related]
9. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. Liakos DG; Neese F J Chem Theory Comput; 2015 Sep; 11(9):4054-63. PubMed ID: 26575901 [TBL] [Abstract][Full Text] [Related]
10. How accurate is the description of ligand-protein interactions by a hybrid QM/MM approach? Kollar J; Frecer V J Mol Model; 2017 Dec; 24(1):11. PubMed ID: 29234892 [TBL] [Abstract][Full Text] [Related]
11. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
12. A big data approach to the ultra-fast prediction of DFT-calculated bond energies. Qu X; Latino DA; Aires-de-Sousa J J Cheminform; 2013; 5():34. PubMed ID: 23849655 [TBL] [Abstract][Full Text] [Related]
13. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351 [TBL] [Abstract][Full Text] [Related]
14. A promising tool to achieve chemical accuracy for density functional theory calculations on Y-NO homolysis bond dissociation energies. Li HZ; Hu LH; Tao W; Gao T; Li H; Lu YH; Su ZM Int J Mol Sci; 2012; 13(7):8051-8070. PubMed ID: 22942689 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. Goerigk L; Kruse H; Grimme S Chemphyschem; 2011 Dec; 12(17):3421-33. PubMed ID: 22113958 [TBL] [Abstract][Full Text] [Related]
16. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations. Brandenburg JG; Alessio M; Civalleri B; Peintinger MF; Bredow T; Grimme S J Phys Chem A; 2013 Sep; 117(38):9282-92. PubMed ID: 23947824 [TBL] [Abstract][Full Text] [Related]
17. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration. Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749 [TBL] [Abstract][Full Text] [Related]
18. Chalcogen bonds: Hierarchical ab initio benchmark and density functional theory performance study. de Azevedo Santos L; Ramalho TC; Hamlin TA; Bickelhaupt FM J Comput Chem; 2021 Apr; 42(10):688-698. PubMed ID: 33543482 [TBL] [Abstract][Full Text] [Related]
19. Exploring non-covalent interactions in excited states: beyond aromatic excimer models. Jones AC; Goerigk L Phys Chem Chem Phys; 2024 Oct; 26(38):25192-25207. PubMed ID: 39314200 [TBL] [Abstract][Full Text] [Related]
20. Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set. Gráfová L; Pitoňák M; Řezáč J; Hobza P J Chem Theory Comput; 2010 Aug; 6(8):2365-76. PubMed ID: 26613492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]