These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27148446)

  • 21. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation.
    Koblenz B; Schoppmeier J; Grunow A; Lechtreck KF
    J Cell Sci; 2003 Jul; 116(Pt 13):2635-46. PubMed ID: 12746491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrastructure of the Algivorous Amoeboflagellate Viridiraptor invadens (Glissomonadida, Cercozoa).
    Hess S; Melkonian M
    Protist; 2014 Sep; 165(5):605-35. PubMed ID: 25150610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular phylogeny of choanoflagellates, the sister group to Metazoa.
    Carr M; Leadbeater BS; Hassan R; Nelson M; Baldauf SL
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16641-6. PubMed ID: 18922774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconciling the bizarre inheritance of microtubules in complex (euglenid) microeukaryotes.
    Yubuki N; Leander BS
    Protoplasma; 2012 Oct; 249(4):859-69. PubMed ID: 22048637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for a direct role of nascent basal bodies during spindle pole initiation in the green alga Spermatozopsis similis.
    Lechtreck KF; Grunow A
    Protist; 1999 Aug; 150(2):163-81. PubMed ID: 10505416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The oral apparatus of Tetrahymena pyriformis, strain WH-6. IV. Observations on the organization of microtubules and filaments in the isolated oral apparatus and the differential effect of potassium chloride on the stability of oral apparatus microtubules.
    Gavin RH
    J Morphol; 1977 Feb; 151(2):239-57. PubMed ID: 403291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flagellar apparatus duplication and partition, flagellar transformation during division in Entosiphon sulcatum.
    Brugerolle G
    Biosystems; 1992; 28(1-3):203-9. PubMed ID: 1292664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic changes in microtubule organization during division of the primitive dinoflagellate Oxyrrhis marina.
    Kato KH; Moriyama A; Itoh TJ; Yamamoto M; Horio T; Huitorel P
    Biol Cell; 2000 Dec; 92(8-9):583-94. PubMed ID: 11374437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unusual nuclear division in Nannochloropsis oculata (Eustigmatophyceae, Heterokonta) which may ensure faithful transmission of secondary plastids.
    Murakami R; Hashimoto H
    Protist; 2009 Feb; 160(1):41-9. PubMed ID: 19013102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of central apparatus components in flagellar motility and microtubule assembly.
    Smith EF; Lefebvre PA
    Cell Motil Cytoskeleton; 1997; 38(1):1-8. PubMed ID: 9295136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Morphology of Mastigamoeba aspera Schulze, 1875 (Archamoebae, Pelobiontida)].
    Chistiakova LV; Miteva OA; Frolov AO
    Tsitologiia; 2012; 54(1):58-65. PubMed ID: 22567901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flagellar apparatus absolute orientations and the phylogeny of the green algae.
    O'Kelly CJ; Floyd GL
    Biosystems; 1983-1984; 16(3-4):227-51. PubMed ID: 6370329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The centrosome in Drosophila oocyte development.
    Megraw TL; Kaufman TC
    Curr Top Dev Biol; 2000; 49():385-407. PubMed ID: 11005029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrodynamic functionality of the lorica in choanoflagellates.
    Asadzadeh SS; Nielsen LT; Andersen A; Dölger J; Kiørboe T; Larsen PS; Walther JH
    J R Soc Interface; 2019 Jan; 16(150):20180478. PubMed ID: 30958164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Golgi apparatus remains associated with microtubule organizing centers during myogenesis.
    Tassin AM; Paintrand M; Berger EG; Bornens M
    J Cell Biol; 1985 Aug; 101(2):630-8. PubMed ID: 3894380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes.
    Maro B; Howlett SK; Webb M
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1665-72. PubMed ID: 2865266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma-tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells.
    Silflow CD; Liu B; LaVoie M; Richardson EA; Palevitz BA
    Cell Motil Cytoskeleton; 1999; 42(4):285-97. PubMed ID: 10223635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants.
    Kosetsu K; Murata T; Yamada M; Nishina M; Boruc J; Hasebe M; Van Damme D; Goshima G
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):E8847-E8854. PubMed ID: 28973935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations.
    Baluska F; Volkmann D; Barlow PW
    Int Rev Cytol; 1997; 175():91-135. PubMed ID: 9203357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii.
    Sanders MA; Salisbury JL
    J Cell Biol; 1989 May; 108(5):1751-60. PubMed ID: 2654141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.