These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 27148704)
1. Treatment of antimony mine drainage: challenges and opportunities with special emphasis on mineral adsorption and sulfate reducing bacteria. Li Y; Hu X; Ren B Water Sci Technol; 2016; 73(9):2039-51. PubMed ID: 27148704 [TBL] [Abstract][Full Text] [Related]
2. Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation. Wang H; Chen F; Mu S; Zhang D; Pan X; Lee DJ; Chang JS Bioresour Technol; 2013 Oct; 146():799-802. PubMed ID: 23993285 [TBL] [Abstract][Full Text] [Related]
3. Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system. Wang X; Jiang H; Zheng G; Liang J; Zhou L Chemosphere; 2021 Jan; 262():127567. PubMed ID: 32755692 [TBL] [Abstract][Full Text] [Related]
4. Bioremediation of mine water. Klein R; Tischler JS; Mühling M; Schlömann M Adv Biochem Eng Biotechnol; 2014; 141():109-72. PubMed ID: 24357145 [TBL] [Abstract][Full Text] [Related]
5. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling. Shipp WG; Zierenberg RA Ecol Appl; 2008 Dec; 18(8 Suppl):A29-54. PubMed ID: 19475917 [TBL] [Abstract][Full Text] [Related]
6. Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue. Phyo AK; Jia Y; Tan Q; Sun H; Liu Y; Dong B; Ruan R Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326522 [TBL] [Abstract][Full Text] [Related]
7. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW). Rodrigues C; Núñez-Gómez D; Silveira DD; Lapolli FR; Lobo-Recio MA J Hazard Mater; 2019 Aug; 375():330-338. PubMed ID: 30826155 [TBL] [Abstract][Full Text] [Related]
8. Antimony in the soil-water-plant system at the Su Suergiu abandoned mine (Sardinia, Italy): strategies to mitigate contamination. Cidu R; Biddau R; Dore E; Vacca A; Marini L Sci Total Environ; 2014 Nov; 497-498():319-331. PubMed ID: 25137381 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: Indispensable role of reactive oxygen species and redox-active moieties. Wei D; Li B; Luo L; Zheng Y; Huang L; Zhang J; Yang Y; Huang H J Hazard Mater; 2020 Jun; 391():122057. PubMed ID: 32044627 [TBL] [Abstract][Full Text] [Related]
10. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179 [TBL] [Abstract][Full Text] [Related]
11. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
12. Mercury mine drainage and processes that control its environmental impact. Rytuba JJ Sci Total Environ; 2000 Oct; 260(1-3):57-71. PubMed ID: 11032116 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms. Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843 [TBL] [Abstract][Full Text] [Related]
14. Removal of antimonate from wastewater by dissimilatory bacterial reduction: Role of the coexisting sulfate. Zhu Y; Wu M; Gao N; Chu W; An N; Wang Q; Wang S J Hazard Mater; 2018 Jan; 341():36-45. PubMed ID: 28768219 [TBL] [Abstract][Full Text] [Related]
15. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run. Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535 [TBL] [Abstract][Full Text] [Related]
16. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage]. Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305 [TBL] [Abstract][Full Text] [Related]
17. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst. Flores RG; Andersen SL; Maia LK; José HJ; Moreira Rde F J Environ Manage; 2012 Nov; 111():53-60. PubMed ID: 22820746 [TBL] [Abstract][Full Text] [Related]
18. Different fates of Sb(III) and Sb(V) during the formation of jarosite mediated by Acidithiobacillus ferrooxidans. Chen L; Wang Y; Liu H; Zhou Y; Nie Z; Xia J; Shu W J Environ Sci (China); 2025 Jan; 147():342-358. PubMed ID: 39003052 [TBL] [Abstract][Full Text] [Related]
19. Microbiological reduction of Sb(V) in anoxic freshwater sediments. Kulp TR; Miller LG; Braiotta F; Webb SM; Kocar BD; Blum JS; Oremland RS Environ Sci Technol; 2014; 48(1):218-26. PubMed ID: 24274659 [TBL] [Abstract][Full Text] [Related]
20. Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Herath I; Vithanage M; Bundschuh J Environ Pollut; 2017 Apr; 223():545-559. PubMed ID: 28190688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]