These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27149017)

  • 21. Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials.
    Talacua H; Söntjens SHM; Thakkar SH; Brizard AMA; van Herwerden LA; Vink A; van Almen GC; Dankers PYW; Bouten CVC; Budde RPJ; Janssen HM; Kluin J
    Macromol Biosci; 2020 Jul; 20(7):e2000024. PubMed ID: 32558365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly tough and ultrafast self-healable dual physically crosslinked sulfated alginate-based polyurethane elastomers for vascular tissue engineering.
    Mostafavi A; Daemi H; Rajabi S; Baharvand H
    Carbohydr Polym; 2021 Apr; 257():117632. PubMed ID: 33541658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Tissue engineering: a multidisciplinary approach].
    Letourneur D; Bordenave L
    Med Sci (Paris); 2017 Jan; 33(1):46-51. PubMed ID: 28120755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental validation of a new approach for the development of mechano-compatible composite scaffolds for vascular tissue engineering.
    Couet F; Mantovani D
    J Mater Sci Mater Med; 2008 Jul; 19(7):2551-4. PubMed ID: 17914629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elastomers for biomedical applications.
    Yoda R
    J Biomater Sci Polym Ed; 1998; 9(6):561-626. PubMed ID: 9659600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyester elastomers for soft tissue engineering.
    Ye H; Zhang K; Kai D; Li Z; Loh XJ
    Chem Soc Rev; 2018 Jun; 47(12):4545-4580. PubMed ID: 29722412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fibrin: a natural biodegradable scaffold in vascular tissue engineering.
    Shaikh FM; Callanan A; Kavanagh EG; Burke PE; Grace PA; McGloughlin TM
    Cells Tissues Organs; 2008; 188(4):333-46. PubMed ID: 18552484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elastomeric electrospun scaffolds of poly(L-lactide-co-trimethylene carbonate) for myocardial tissue engineering.
    Mukherjee S; Gualandi C; Focarete ML; Ravichandran R; Venugopal JR; Raghunath M; Ramakrishna S
    J Mater Sci Mater Med; 2011 Jul; 22(7):1689-99. PubMed ID: 21617996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-Pot Synthesis of Unsaturated Polyester Bioelastomer with Controllable Material Curing for Microscale Designs.
    Davenport Huyer L; Bannerman AD; Wang Y; Savoji H; Knee-Walden EJ; Brissenden A; Yee B; Shoaib M; Bobicki E; Amsden BG; Radisic M
    Adv Healthc Mater; 2019 Aug; 8(16):e1900245. PubMed ID: 31313890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue engineering a small diameter vessel substitute: engineering constructs with select biomaterials and cells.
    McBane JE; Sharifpoor S; Labow RS; Ruel M; Suuronen EJ; Santerre JP
    Curr Vasc Pharmacol; 2012 May; 10(3):347-60. PubMed ID: 22239637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of bio-based polyester elastomers and evaluation of their
    Gao Y; Xue J; Zhang L; Wang Z
    Biomater Sci; 2022 Jul; 10(14):3924-3934. PubMed ID: 35699472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive glass reinforced elastomer composites for skeletal regeneration: A review.
    Zeimaran E; Pourshahrestani S; Djordjevic I; Pingguan-Murphy B; Kadri NA; Towler MR
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():175-88. PubMed ID: 26042705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Vascular Grafts with Multiphase Structures.
    James BD; Allen JB
    Methods Mol Biol; 2022; 2375():115-124. PubMed ID: 34591303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C; Huang Y; Tang L; Hong Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2169-2180. PubMed ID: 28036169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications.
    Chen QZ; Liang SL; Wang J; Simon GP
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1805-18. PubMed ID: 22098880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.
    Du Y; Yu M; Chen X; Ma PX; Lei B
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3079-91. PubMed ID: 26765285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endothelialized microvasculature based on a biodegradable elastomer.
    Fidkowski C; Kaazempur-Mofrad MR; Borenstein J; Vacanti JP; Langer R; Wang Y
    Tissue Eng; 2005; 11(1-2):302-9. PubMed ID: 15738683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.