BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27149328)

  • 1. Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase.
    Richard JP; Amyes TL; Malabanan MM; Zhai X; Kim KJ; Reinhardt CJ; Wierenga RK; Drake EJ; Gulick AM
    Biochemistry; 2016 May; 55(21):3036-47. PubMed ID: 27149328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a hydrophobic clamp.
    Malabanan MM; Koudelka AP; Amyes TL; Richard JP
    J Am Chem Soc; 2012 Jun; 134(24):10286-98. PubMed ID: 22583393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnitude and origin of the enhanced basicity of the catalytic glutamate of triosephosphate isomerase.
    Malabanan MM; Nitsch-Velasquez L; Amyes TL; Richard JP
    J Am Chem Soc; 2013 Apr; 135(16):5978-81. PubMed ID: 23560625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme architecture: remarkably similar transition states for triosephosphate isomerase-catalyzed reactions of the whole substrate and the substrate in pieces.
    Zhai X; Amyes TL; Richard JP
    J Am Chem Soc; 2014 Mar; 136(11):4145-8. PubMed ID: 24588650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for activation of triosephosphate isomerase by phosphite dianion: the role of a ligand-driven conformational change.
    Malabanan MM; Amyes TL; Richard JP
    J Am Chem Soc; 2011 Oct; 133(41):16428-31. PubMed ID: 21939233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wildtype and engineered monomeric triosephosphate isomerase from Trypanosoma brucei: partitioning of reaction intermediates in D2O and activation by phosphite dianion.
    Malabanan MM; Go MK; Amyes TL; Richard JP
    Biochemistry; 2011 Jun; 50(25):5767-79. PubMed ID: 21553855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triosephosphate Isomerase: The Crippling Effect of the P168A/I172A Substitution at the Heart of an Enzyme Active Site.
    Hegazy R; Richard JP
    Biochemistry; 2023 Oct; 62(20):2916-2927. PubMed ID: 37768194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase.
    Kulkarni YS; Liao Q; Petrović D; Krüger DM; Strodel B; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2017 Aug; 139(30):10514-10525. PubMed ID: 28683550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mutations that probe the interactions between the catalytic and dianion activation sites of triosephosphate isomerase.
    Zhai X; Amyes TL; Wierenga RK; Loria JP; Richard JP
    Biochemistry; 2013 Aug; 52(34):5928-40. PubMed ID: 23909928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe.
    Richard JP; Cristobal JR; Amyes TL
    Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach.
    Go MK; Koudelka A; Amyes TL; Richard JP
    Biochemistry; 2010 Jun; 49(25):5377-89. PubMed ID: 20481463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Asn11 in Catalysis by Triosephosphate Isomerase.
    Hegazy R; Cordara G; Wierenga RK; Richard JP
    Biochemistry; 2023 Jun; 62(11):1794-1806. PubMed ID: 37162263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase.
    Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase.
    Zhai X; Go MK; O'Donoghue AC; Amyes TL; Pegan SD; Wang Y; Loria JP; Mesecar AD; Richard JP
    Biochemistry; 2014 Jun; 53(21):3486-501. PubMed ID: 24825099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of (R)-glyceraldehyde 3-phosphate in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Biochemistry; 2005 Feb; 44(7):2610-21. PubMed ID: 15709774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
    Zhai X; Amyes TL; Richard JP
    J Am Chem Soc; 2015 Dec; 137(48):15185-97. PubMed ID: 26570983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance.
    Richard JP
    Biochemistry; 1991 May; 30(18):4581-5. PubMed ID: 2021650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of dihydroxyacetone phosphate in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Biochemistry; 2005 Feb; 44(7):2622-31. PubMed ID: 15709775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triosephosphate isomerase: a highly evolved biocatalyst.
    Wierenga RK; Kapetaniou EG; Venkatesan R
    Cell Mol Life Sci; 2010 Dec; 67(23):3961-82. PubMed ID: 20694739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the catalytic importance of a conserved Glu97 residue in triosephosphate isomerase.
    Chang TC; Park JH; Colquhoun AN; Khoury CB; Seangmany NA; Schwans JP
    Biochem Biophys Res Commun; 2018 Oct; 505(2):492-497. PubMed ID: 30268499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.