BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 27149963)

  • 1. Age-dependency of the serum oxidative level in the senescence-accelerated mouse prone 8.
    Taniguchi S; Hanafusa M; Tsubone H; Takimoto H; Yamanaka D; Kuwahara M; Ito K
    J Vet Med Sci; 2016 Sep; 78(8):1369-71. PubMed ID: 27149963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The senescence-accelerated mouse-prone 8 is not a suitable model for the investigation of cardiac inflammation and oxidative stress and their modulation by dietary phytochemicals.
    Schiborr C; Schwamm D; Kocher A; Rimbach G; Eckert GP; Frank J
    Pharmacol Res; 2013 Aug; 74():113-20. PubMed ID: 23792082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-related expression of adenosine receptors in brain from the senescence-accelerated mouse.
    Castillo CA; Albasanz JL; León D; Jordán J; Pallàs M; Camins A; Martín M
    Exp Gerontol; 2009; 44(6-7):453-61. PubMed ID: 19410642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac oxidative stress and inflammation are similar in SAMP8 and SAMR1 mice and unaltered by curcumin and Ginkgo biloba extract intake.
    Schiborr C; Eckert GP; Weissenberger J; Müller WE; Schwamm D; Grune T; Rimbach G; Frank J
    Curr Pharm Biotechnol; 2010 Dec; 11(8):861-7. PubMed ID: 20874680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8.
    Fernández-Gómez FJ; Muñoz-Delgado E; Montenegro MF; Campoy FJ; Vidal CJ; Jordán J
    J Neurosci Res; 2010 Jan; 88(1):155-66. PubMed ID: 19610099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes of Nrf2 and phosphorylated GSK-3β in a mouse model of accelerated aging (SAMP8).
    Tomobe K; Shinozuka T; Kuroiwa M; Nomura Y
    Arch Gerontol Geriatr; 2012; 54(2):e1-7. PubMed ID: 21784539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ameliorative effects of lotus seedpod proanthocyanidins on cognitive deficits and oxidative damage in senescence-accelerated mice.
    Gong Y; Liu L; Xie B; Liao Y; Yang E; Sun Z
    Behav Brain Res; 2008 Dec; 194(1):100-7. PubMed ID: 18652848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes of anti-elastin antibodies in senescence-accelerated mice.
    Atanasova M; Konova E; Georgieva M; Dimitrova A; Coquand-Gandit M; Faury G; Baydanoff S
    Gerontology; 2010; 56(3):310-8. PubMed ID: 19752527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse.
    Jiang N; Yan X; Zhou W; Zhang Q; Chen H; Zhang Y; Zhang X
    J Proteome Res; 2008 Sep; 7(9):3678-86. PubMed ID: 18656976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracerebral hemorrhage-induced brain injury is aggravated in senescence-accelerated prone mice.
    Lee JC; Cho GS; Choi BO; Kim HC; Kim YS; Kim WK
    Stroke; 2006 Jan; 37(1):216-22. PubMed ID: 16322488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age.
    Alvarez-García O; Vega-Naredo I; Sierra V; Caballero B; Tomás-Zapico C; Camins A; García JJ; Pallàs M; Coto-Montes A
    Biogerontology; 2006 Feb; 7(1):43-52. PubMed ID: 16518719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol.
    Cristòfol R; Porquet D; Corpas R; Coto-Montes A; Serret J; Camins A; Pallàs M; Sanfeliu C
    J Pineal Res; 2012 Apr; 52(3):271-81. PubMed ID: 22085194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice.
    Soriano-Cantón R; Perez-Villalba A; Morante-Redolat JM; Marqués-Torrejón MÁ; Pallás M; Pérez-Sánchez F; Fariñas I
    Aging Cell; 2015 Jun; 14(3):453-62. PubMed ID: 25728253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative damage in the livers of senescence-accelerated mice: a gender-related response.
    Tomás-Zapico C; Alvarez-García O; Sierra V; Vega-Naredo I; Caballero B; Joaquín García J; Acuña-Castroviejo D; Rodríguez MI; Tolivia D; Rodríguez-Colunga MJ; Coto-Montes A
    Can J Physiol Pharmacol; 2006 Feb; 84(2):213-20. PubMed ID: 16900947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early and transient increase in oxidative stress in the cerebral cortex of senescence-accelerated mouse.
    Sato E; Oda N; Ozaki N; Hashimoto S; Kurokawa T; Ishibashi S
    Mech Ageing Dev; 1996 Feb; 86(2):105-14. PubMed ID: 8852931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomarkers of oxidative stress, antioxidant defence and inflammation are altered in the senescence-accelerated mouse prone 8.
    Bayram B; Nikolai S; Huebbe P; Ozcelik B; Grimm S; Grune T; Frank J; Rimbach G
    Age (Dordr); 2013 Aug; 35(4):1205-17. PubMed ID: 22767392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice.
    Caballero B; Vega-Naredo I; Sierra V; Huidobro-Fernández C; Soria-Valles C; De Gonzalo-Calvo D; Tolivia D; Gutierrez-Cuesta J; Pallas M; Camins A; Rodríguez-Colunga MJ; Coto-Montes A
    J Pineal Res; 2008 Oct; 45(3):302-11. PubMed ID: 18410310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8).
    Cuesta S; Kireev R; García C; Rancan L; Vara E; Tresguerres JA
    Age (Dordr); 2013 Jun; 35(3):659-71. PubMed ID: 22411259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin improves inflammation processes in liver of senescence-accelerated prone male mice (SAMP8).
    Cuesta S; Kireev R; Forman K; García C; Escames G; Ariznavarreta C; Vara E; Tresguerres JA
    Exp Gerontol; 2010 Dec; 45(12):950-6. PubMed ID: 20817086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of cathepsins E and D in reactive microglial cells associated with spongiform degeneration in the brain stem of senescence-accelerated mouse.
    Amano T; Nakanishi H; Oka M; Yamamoto K
    Exp Neurol; 1995 Dec; 136(2):171-82. PubMed ID: 7498407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.