These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 27150153)
1. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells. Takasawa R; Shimada N; Uchiro H; Takahashi S; Yoshimori A; Tanuma S Biol Pharm Bull; 2016; 39(5):869-73. PubMed ID: 27150153 [TBL] [Abstract][Full Text] [Related]
2. Addition of hydrophobic side chains improve the apoptosis inducibility of the human glyoxalase I inhibitor, TLSC702. Azuma M; Inoue M; Nishida A; Akahane H; Kitajima M; Natani S; Chimori R; Yoshimori A; Mano Y; Uchiro H; Tanuma SI; Takasawa R Bioorg Med Chem Lett; 2021 May; 40():127918. PubMed ID: 33711442 [TBL] [Abstract][Full Text] [Related]
3. Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells. Shimada N; Takasawa R; Tanuma SI Arch Biochem Biophys; 2018 Jan; 638():1-7. PubMed ID: 29225125 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of human glyoxalase I and its complex with TLSC702 reveal inhibitor binding mode and substrate preference. Usami M; Ando K; Shibuya A; Takasawa R; Yokoyama H FEBS Lett; 2022 Jun; 596(11):1458-1467. PubMed ID: 35363883 [TBL] [Abstract][Full Text] [Related]
5. Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I. Takasawa R; Akahane H; Tanaka H; Shimada N; Yamamoto T; Uchida-Maruki H; Sai M; Yoshimori A; Tanuma SI Bioorg Med Chem Lett; 2017 Mar; 27(5):1169-1174. PubMed ID: 28169168 [TBL] [Abstract][Full Text] [Related]
6. Discovery of a new type inhibitor of human glyoxalase I by myricetin-based 4-point pharmacophore. Takasawa R; Tao A; Saeki K; Shionozaki N; Tanaka R; Uchiro H; Takahashi S; Yoshimori A; Tanuma S Bioorg Med Chem Lett; 2011 Jul; 21(14):4337-42. PubMed ID: 21669529 [TBL] [Abstract][Full Text] [Related]
7. Delphinidin, a dietary anthocyanidin in berry fruits, inhibits human glyoxalase I. Takasawa R; Saeki K; Tao A; Yoshimori A; Uchiro H; Fujiwara M; Tanuma S Bioorg Med Chem; 2010 Oct; 18(19):7029-33. PubMed ID: 20801663 [TBL] [Abstract][Full Text] [Related]
8. Triphenylbismuth dichloride inhibits human glyoxalase I and induces cytotoxicity in cultured cancer cell lines. Takasawa R; Jona A; Inoue M; Azuma M; Akahane H; Ueno Y; Nakagawa Y; Chimori R; Mano Y; Murata Y; Yasuike S; Kaji T J Toxicol Sci; 2022; 47(12):539-546. PubMed ID: 36450498 [TBL] [Abstract][Full Text] [Related]
9. The PKM2 inhibitor shikonin enhances piceatannol-induced apoptosis of glyoxalase I-dependent cancer cells. Inoue M; Nakagawa Y; Azuma M; Akahane H; Chimori R; Mano Y; Takasawa R Genes Cells; 2024 Jan; 29(1):52-62. PubMed ID: 37963646 [TBL] [Abstract][Full Text] [Related]
10. Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Sakamoto H; Mashima T; Sato S; Hashimoto Y; Yamori T; Tsuruo T Clin Cancer Res; 2001 Aug; 7(8):2513-8. PubMed ID: 11489834 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory Effect of Isoflavones from Erythrina poeppigiana on the Growth of HL-60 Human Leukemia Cells through Inhibition of Glyoxalase I. Hikita K; Yamada S; Shibata R; Katoh M; Murata T; Kato K; Tanaka H; Kaneda N Nat Prod Commun; 2015 Sep; 10(9):1581-4. PubMed ID: 26594764 [TBL] [Abstract][Full Text] [Related]
12. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents. Al-Balas QA; Hassan MA; Al-Shar'i NA; Mhaidat NM; Almaaytah AM; Al-Mahasneh FM; Isawi IH Drug Des Devel Ther; 2016; 10():2623-9. PubMed ID: 27574401 [TBL] [Abstract][Full Text] [Related]
13. Structure-activity relationship of human GLO I inhibitory natural flavonoids and their growth inhibitory effects. Takasawa R; Takahashi S; Saeki K; Sunaga S; Yoshimori A; Tanuma S Bioorg Med Chem; 2008 Apr; 16(7):3969-75. PubMed ID: 18258440 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of potential flavonoid inhibitors of glyoxalase-I based on virtual screening and in vitro studies. Yadav A; Kumar R; Sunkaria A; Singhal N; Kumar M; Sandhir R J Biomol Struct Dyn; 2016 May; 34(5):993-1007. PubMed ID: 26108947 [TBL] [Abstract][Full Text] [Related]
15. Glyoxalase I in tumor cell proliferation and survival and as a potential target for anticancer therapy. Geng X; Ma J; Zhang F; Xu C Oncol Res Treat; 2014; 37(10):570-4. PubMed ID: 25342507 [TBL] [Abstract][Full Text] [Related]
16. An anthraquinone derivative from Luffa acutangula induces apoptosis in human lung cancer cell line NCI-H460 through p53-dependent pathway. Vanajothi R; Srinivasan P J Recept Signal Transduct Res; 2016; 36(3):292-302. PubMed ID: 26585176 [TBL] [Abstract][Full Text] [Related]
17. Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury. Shin MJ; Kim DW; Lee YP; Ahn EH; Jo HS; Kim DS; Kwon OS; Kang TC; Cho YJ; Park J; Eum WS; Choi SY Free Radic Biol Med; 2014 Feb; 67():195-210. PubMed ID: 24252591 [TBL] [Abstract][Full Text] [Related]
18. Reversal of anticancer drug resistance by COTC based on intracellular glutathione and glyoxalase I. Kamiya D; Uchihata Y; Ichikawa E; Kato K; Umezawa K Bioorg Med Chem Lett; 2005 Feb; 15(4):1111-4. PubMed ID: 15686923 [TBL] [Abstract][Full Text] [Related]
19. Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking. Al-Shar'i NA; Al-Balas QA; Al-Waqfi RA; Hassan MA; Alkhalifa AE; Ayoub NM J Comput Aided Mol Des; 2019 Sep; 33(9):799-815. PubMed ID: 31630312 [TBL] [Abstract][Full Text] [Related]
20. Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment. Takeuchi M; Kimura S; Kuroda J; Ashihara E; Kawatani M; Osada H; Umezawa K; Yasui E; Imoto M; Tsuruo T; Yokota A; Tanaka R; Nagao R; Nakahata T; Fujiyama Y; Maekawa T Cell Death Differ; 2010 Jul; 17(7):1211-20. PubMed ID: 20139893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]