BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27150439)

  • 1. Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography.
    Ren Y; Chen GZ; Liu Z; Cai Y; Lu GM; Li ZY
    Biomed Eng Online; 2016 May; 15(1):50. PubMed ID: 27150439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility of image-based analysis of cerebral aneurysm geometry and hemodynamics: an in-vitro study of magnetic resonance imaging, computed tomography, and three-dimensional rotational angiography.
    Goubergrits L; Schaller J; Kertzscher U; Petz Ch; Hege HC; Spuler A
    J Neurol Surg A Cent Eur Neurosurg; 2013 Sep; 74(5):294-302. PubMed ID: 23700168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study.
    Geers AJ; Larrabide I; Radaelli AG; Bogunovic H; Kim M; Gratama van Andel HA; Majoie CB; VanBavel E; Frangi AF
    AJNR Am J Neuroradiol; 2011 Mar; 32(3):581-6. PubMed ID: 21183614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of magnetic resonance angiography as a possible alternative to rotational angiography or computed tomography angiography for assessing cerebrovascular computational fluid dynamics.
    Yoneyama Y; Isoda H; Ishiguro K; Terada M; Kamiya M; Otsubo K; Perera R; Mizuno T; Fukuyama A; Takiguchi K; Watanabe T; Kosugi T; Komori Y; Naganawa S
    Phys Eng Sci Med; 2020 Dec; 43(4):1327-1337. PubMed ID: 33044647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraobserver and interobserver variability in CT angiography and MR angiography measurements of the size of cerebral aneurysms.
    Kim HJ; Yoon DY; Kim ES; Lee HJ; Jeon HJ; Lee JY; Cho BM
    Neuroradiology; 2017 May; 59(5):491-497. PubMed ID: 28343249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 4D-CT angiography versus 3D-rotational angiography as the imaging modality for computational fluid dynamics of cerebral aneurysms.
    Cancelliere NM; Najafi M; Brina O; Bouillot P; Vargas MI; Lovblad KO; Krings T; Pereira VM; Steinman DA
    J Neurointerv Surg; 2020 Jun; 12(6):626-630. PubMed ID: 31772042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracranial aneurysm neck size overestimation with 3D rotational angiography: the impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics.
    Schneiders JJ; Marquering HA; Antiga L; van den Berg R; VanBavel E; Majoie CB
    AJNR Am J Neuroradiol; 2013 Jan; 34(1):121-8. PubMed ID: 22899789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.
    Castro MA; Putman CM; Cebral JR
    Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-contrast enhanced silent MR angiography to evaluate hemodynamics and morphology of unruptured intracranial aneurysms: a comparative computational fluid dynamics study.
    Lu Y; Leng X; Zou R; Chen Q; Li W; Zhou X; Tan S; Huang X; Ding C; Gong F; Xiang J; Wang Y
    J Neurointerv Surg; 2023 Aug; 15(8):753-759. PubMed ID: 35882551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics.
    Saho T; Onishi H
    Radiol Phys Technol; 2015 Jul; 8(2):258-65. PubMed ID: 25911446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of image-based computational models of intracranial aneurysm; methodological issue.
    Sabour S; Li ZY
    Biomed Eng Online; 2016 Sep; 15():109. PubMed ID: 27637185
    [No Abstract]   [Full Text] [Related]  

  • 15. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography.
    Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM
    AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of angiographic acquisition modality and reconstruction on morphometric and haemodynamic analysis of intracranial aneurysms.
    Lauric A; Hippelheuser JE; Malek AM
    J Neurointerv Surg; 2018 Sep; 10(9):911-915. PubMed ID: 29352062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms.
    Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR
    Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic vascular biomarkers for initiation of paraclinoid internal carotid artery aneurysms using patient-specific computational fluid dynamic simulation based on magnetic resonance imaging.
    Watanabe T; Isoda H; Takehara Y; Terada M; Naito T; Kosugi T; Onishi Y; Tanoi C; Izumi T
    Neuroradiology; 2018 May; 60(5):545-555. PubMed ID: 29520642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.