These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27150450)

  • 1. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.
    Bengaluru Subramanyam S; Kondrashov V; Rühe J; Varanasi KK
    ACS Appl Mater Interfaces; 2016 May; 8(20):12583-7. PubMed ID: 27150450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.
    Murphy KR; McClintic WT; Lester KC; Collier CP; Boreyko JB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24308-24317. PubMed ID: 28653826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delaying Frost Formation by Controlling Surface Chemistry of Carbon Nanotube-Coated Steel Surfaces.
    Zhang Y; Klittich MR; Gao M; Dhinojwala A
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6512-6519. PubMed ID: 28117579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-icing superhydrophobic coatings.
    Cao L; Jones AK; Sikka VK; Wu J; Gao D
    Langmuir; 2009 Nov; 25(21):12444-8. PubMed ID: 19799464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superhydrophobic surfaces: are they really ice-repellent?
    Kulinich SA; Farhadi S; Nose K; Du XW
    Langmuir; 2011 Jan; 27(1):25-9. PubMed ID: 21141839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces.
    Stamatopoulos C; Hemrle J; Wang D; Poulikakos D
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10233-10242. PubMed ID: 28230349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.
    Metya AK; Singh JK; Müller-Plathe F
    Phys Chem Chem Phys; 2016 Sep; 18(38):26796-26806. PubMed ID: 27711467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Water Solidification Concepts in Designing Nano-Textured Anti-Icing Surfaces.
    Gohari B; Russell K; Hejazi V; Rohatgi P
    J Phys Chem B; 2017 Aug; 121(32):7527-7535. PubMed ID: 28658573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability.
    Yeong YH; Wang C; Wynne KJ; Gupta MC
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):32050-32059. PubMed ID: 27797475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces.
    Lv C; Zhang X; Niu F; He F; Hao P
    Sci Rep; 2017 Feb; 7():42752. PubMed ID: 28202939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties.
    Barthwal S; Lim SH
    Soft Matter; 2019 Oct; 15(39):7945-7955. PubMed ID: 31544192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties.
    Xie Z; Wang H; Geng Y; Li M; Deng Q; Tian Y; Chen R; Zhu X; Liao Q
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48308-48321. PubMed ID: 34587444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.