These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27150511)

  • 1. Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria.
    Zhang SC; Lai QH; Lu Y; Liu ZD; Wang TM; Zhang C; Xing XH
    J Biosci Bioeng; 2016 Oct; 122(4):482-7. PubMed ID: 27150511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading.
    Liu ZH; Chen HZ
    Bioresour Technol; 2016 Feb; 201():15-26. PubMed ID: 26615497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing metabolic interactions in a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Mahadevan R
    BMC Biotechnol; 2013 Nov; 13():95. PubMed ID: 24188120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates.
    Ryu S; Karim MN
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):529-42. PubMed ID: 21519935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass.
    Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S
    Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.
    Xu GC; Ding JC; Han RZ; Dong JJ; Ni Y
    Bioresour Technol; 2016 Mar; 203():364-9. PubMed ID: 26597485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment on corn stover with low concentration of formic acid.
    Xu J; Thomsen MH; Thomsen AB
    J Microbiol Biotechnol; 2009 Aug; 19(8):845-50. PubMed ID: 19734724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.
    Ren Z; Ward TE; Logan BE; Regan JM
    J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400.
    Ohgren K; Bengtsson O; Gorwa-Grauslund MF; Galbe M; Hahn-Hägerdal B; Zacchi G
    J Biotechnol; 2006 Dec; 126(4):488-98. PubMed ID: 16828190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing.
    Salimi F; Zhuang K; Mahadevan R
    Biotechnol J; 2010 Jul; 5(7):726-38. PubMed ID: 20665645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii.
    Mu X; Sun W; Liu C; Wang H
    Biotechnol Lett; 2011 Aug; 33(8):1587-91. PubMed ID: 21424838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.
    Zhu J; Rong Y; Yang J; Zhou X; Xu Y; Zhang L; Chen J; Yong Q; Yu S
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1370-81. PubMed ID: 25947618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production.
    Yu Y; Feng Y; Xu C; Liu J; Li D
    Bioresour Technol; 2011 Apr; 102(8):5123-8. PubMed ID: 21334878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step size reduction and post-washing of steam exploded corn stover improving simultaneous saccharification and fermentation for ethanol production.
    Liu ZH; Chen HZ
    Bioresour Technol; 2017 Jan; 223():47-58. PubMed ID: 27788429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaugmentation of the thermophilic anaerobic biodegradation of cellulose and corn stover.
    Strang O; Ács N; Wirth R; Maróti G; Bagi Z; Rákhely G; Kovács KL
    Anaerobe; 2017 Aug; 46():104-113. PubMed ID: 28554814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.
    Niessen J; Schröder U; Harnisch F; Scholz F
    Lett Appl Microbiol; 2005; 41(3):286-90. PubMed ID: 16108922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lime pretreatment and enzymatic hydrolysis of corn stover.
    Kim S; Holtzapple MT
    Bioresour Technol; 2005 Dec; 96(18):1994-2006. PubMed ID: 16112487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved efficiency of butanol production by absorbed lignocellulose fermentation.
    He Q; Chen H
    J Biosci Bioeng; 2013 Mar; 115(3):298-302. PubMed ID: 23085417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover.
    Ohgren K; Bura R; Saddler J; Zacchi G
    Bioresour Technol; 2007 Sep; 98(13):2503-10. PubMed ID: 17113771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.