These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27150516)

  • 1. DOSIMETRIC QUALITY ASSURANCE INTERPRETED FOR ISO 17025 IN PUBLIC HEALTH ENGLAND'S PERSONAL DOSIMETRY SERVICE.
    Gilvin PJ; Gibbens NJ; Baker ST
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):132-5. PubMed ID: 27150516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.
    Romero AM; Rodríguez R; López JL; Martín R; Benavente JF
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):70-3. PubMed ID: 26567323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DOSIMETRIC PROPERTIES OF THE NEW TLD ALBEDO NEUTRON DOSEMETER AWST-TL-GD 04.
    Haninger T; Henniger J
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):150-3. PubMed ID: 26405220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Albedo neutron dosimetry in Germany: regulations and performance.
    Luszik-Bhadra M; Zimbal A; Busch F; Eichelberger A; Engelhardt J; Figel M; Frasch G; Günther K; Jordan M; Martini E; Haninger T; Rimpler A; Seifert R
    Radiat Prot Dosimetry; 2014 Dec; 162(4):649-56. PubMed ID: 24639589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainties associated with the use of optically stimulated luminescence in personal dosimetry.
    Benevides L; Romanyukha A; Hull F; Duffy M; Voss S; Moscovitch M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):165-7. PubMed ID: 21450702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A STUDY ON THE UNCERTAINTY FOR THE ROUTINE DOSIMETRY SERVICE AT THE LEBANESE ATOMIC ENERGY COMMISSION USING HARSHAW 8814 DOSEMETERS.
    Rizk C; Vanhavere F
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):168-72. PubMed ID: 26443544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An example of abnormal glow curves identification in personnel thermoluminescent dosimetry.
    Osorio Piniella V; Stadtmann H; Lankmayr E
    J Biochem Biophys Methods; 2002; 53(1-3):117-22. PubMed ID: 12406593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of standards for individual monitoring in Europe.
    Fantuzzi E; Alves JG; Ambrosi P; Janzekovic H; Vartiainen E
    Radiat Prot Dosimetry; 2004; 112(1):3-44. PubMed ID: 15574985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical low dose limits for passive personal dosemeters and the implications for uncertainties close to the limit of detection.
    Gilvin PJ; Perks CA
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):102-6. PubMed ID: 20959337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of active personal dosemeters as a personal monitoring device: comparison with TL dosimetry.
    Boziari A; Koukorava C; Carinou E; Hourdakis CJ; Kamenopoulou V
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):173-6. PubMed ID: 21196464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.
    Lopez MA; Martin R; Hernandez C; Navarro JF; Navarro T; Perez B; Sierra I
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):31-4. PubMed ID: 26433182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical dosimetry system for criticality accidents.
    Miljanić S; Ilijas B
    Radiat Prot Dosimetry; 2004; 110(1-4):477-81. PubMed ID: 15353694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the methodology for dosimetry audit of heterogeneity corrections and small MLC-shaped fields: Results of IAEA multi-center studies.
    Izewska J; Wesolowska P; Azangwe G; Followill DS; Thwaites DI; Arib M; Stefanic A; Viegas C; Suming L; Ekendahl D; Bulski W; Georg D
    Acta Oncol; 2016 Jul; 55(7):909-16. PubMed ID: 26934916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different versions of the right answer: the importance of measurement uncertainty in radiation dosimetry.
    Gilvin P; McWhan A
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):62-6. PubMed ID: 20952420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ENEA neutron personal dosimetry service.
    Morelli B; Mariotti F; Fantuzzi E
    Radiat Prot Dosimetry; 2006; 120(1-4):312-5. PubMed ID: 16644987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoluminescent dosimetry in veterinary diagnostic radiology.
    Hernández-Ruiz L; Jimenez-Flores Y; Rivera-Montalvo T; Arias-Cisneros L; Méndez-Aguilar RE; Uribe-Izquierdo P
    Appl Radiat Isot; 2012 Dec; 71 Suppl():44-7. PubMed ID: 22917941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Favouring the proposition.
    Horowitz Y; Delgado A
    Radiat Prot Dosimetry; 2002; 102(3):269-73. PubMed ID: 12430966
    [No Abstract]   [Full Text] [Related]  

  • 18. Radiation dosimetry of a graphite moderated radium-beryllium source.
    Holden NE; Reciniello RN; Hu JP
    Health Phys; 2004 May; 86(5 Suppl):S110-2. PubMed ID: 15069300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality assurance of personal beta particle dosemeters used for individual monitoring of occupationally exposed persons.
    Helmstädter K; Ambrosi P
    Radiat Prot Dosimetry; 2007; 125(1-4):105-8. PubMed ID: 17337739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dosimetric quality control measurements of 60Co teletherapy units in Nigeria.
    Farai IP; Obed RI
    Health Phys; 2004 May; 86(5):493-6. PubMed ID: 15083144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.