BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27150669)

  • 1. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation.
    Gone S; Alfonso-Prieto M; Paudyal S; Nicholson AW
    Sci Rep; 2016 May; 6():25448. PubMed ID: 27150669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant.
    Sun W; Nicholson AW
    Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis.
    Sun W; Pertzev A; Nicholson AW
    Nucleic Acids Res; 2005; 33(3):807-15. PubMed ID: 15699182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB.
    Paudyal S; Alfonso-Prieto M; Carnevale V; Redhu SK; Klein ML; Nicholson AW
    Proteins; 2015 Mar; 83(3):459-72. PubMed ID: 25546632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects.
    Li HL; Chelladurai BS; Zhang K; Nicholson AW
    Nucleic Acids Res; 1993 Apr; 21(8):1919-25. PubMed ID: 8493105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli.
    Robertson ES; Aggison LA; Nicholson AW
    Mol Microbiol; 1994 Mar; 11(6):1045-57. PubMed ID: 8022276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNase III is positively regulated by T7 protein kinase.
    Mayer JE; Schweiger M
    J Biol Chem; 1983 May; 258(9):5340-3. PubMed ID: 6406499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage T7 protein kinase: Site of inhibitory autophosphorylation, and use of dephosphorylated enzyme for efficient modification of protein in vitro.
    Gone S; Nicholson AW
    Protein Expr Purif; 2012 Oct; 85(2):218-23. PubMed ID: 22951189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III.
    Pertzev AV; Nicholson AW
    Nucleic Acids Res; 2006; 34(13):3708-21. PubMed ID: 16896014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation.
    Sim SH; Yeom JH; Shin C; Song WS; Shin E; Kim HM; Cha CJ; Han SH; Ha NC; Kim SW; Hahn Y; Bae J; Lee K
    Mol Microbiol; 2010 Jan; 75(2):413-25. PubMed ID: 19943899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approaches to understanding double-stranded RNA processing by ribonuclease III purification and assays of homodimeric and heterodimeric forms of RNase III from bacterial extremophiles and mesophiles.
    Meng W; Nicholson RH; Nathania L; Pertzev AV; Nicholson AW
    Methods Enzymol; 2008; 447():119-29. PubMed ID: 19161841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis.
    Campbell FE; Cassano AG; Anderson VE; Harris ME
    J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression.
    Carzaniga T; Dehò G; Briani F
    J Bacteriol; 2015 Jun; 197(11):1931-8. PubMed ID: 25825432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.
    Kim K; Sim SH; Jeon CO; Lee Y; Lee K
    FEMS Microbiol Lett; 2011 Feb; 315(1):30-7. PubMed ID: 21133991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Escherichia coli RNase III activity.
    Lim B; Sim M; Lee H; Hyun S; Lee Y; Hahn Y; Shin E; Lee K
    J Microbiol; 2015 Aug; 53(8):487-94. PubMed ID: 26224450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli.
    Lim B; Lee K
    J Bacteriol; 2015 Apr; 197(7):1297-305. PubMed ID: 25645556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ribonuclease III from Brucella.
    Wu CX; Xu XJ; Zheng K; Liu F; Yang XD; Chen CF; Chen HC; Liu ZF
    Gene; 2016 Apr; 579(2):183-92. PubMed ID: 26778206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.