These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27150767)

  • 1. Simulation of the formation and characteristics of ultrasonic fountain.
    Xu Z; Yasuda K; Liu X
    Ultrason Sonochem; 2016 Sep; 32():241-246. PubMed ID: 27150767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic atomization of liquids in drop-chain acoustic fountains.
    Simon JC; Sapozhnikov OA; Khokhlova VA; Crum LA; Bailey MR
    J Fluid Mech; 2015 Mar; 766():129-146. PubMed ID: 25977591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization.
    Yano YF; Douguchi J; Kumagai A; Iijima T; Tomida Y; Miyamoto T; Matsuura K
    J Chem Phys; 2006 Nov; 125(17):174705. PubMed ID: 17100459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodicity in ultrasonic atomization involving beads-fountain oscillations and mist generation: Effects of driving frequency.
    Wang X; Mori Y; Tsuchiya K
    Ultrason Sonochem; 2022 May; 86():105997. PubMed ID: 35417794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental characterisation of the thermal behaviour of different materials submitted to ultrasound in an ultrasonic fountain.
    Tingaud F; Ferrouillat S; Colasson S; Bontemps A; Bulliard-Sauret O
    Ultrason Sonochem; 2013 Jul; 20(4):1046-53. PubMed ID: 23422092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ultrasonic distillation to sparging of liquid mixtures.
    Jung HY; Park HJ; Calo JM; Diebold GJ
    Anal Chem; 2010 Dec; 82(24):10090-4. PubMed ID: 21073163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of liquid velocity distribution in a sonochemical reactor.
    Xu Z; Yasuda K; Koda S
    Ultrason Sonochem; 2013 Jan; 20(1):452-9. PubMed ID: 22634380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation characteristics of alcohol from aqueous solution by ultrasonic atomization.
    Yasuda K; Mochida K; Asakura Y; Koda S
    Ultrason Sonochem; 2014 Nov; 21(6):2026-31. PubMed ID: 24613472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple derivation of the critical condition for the ultrasonic atomization of polymer solutions.
    Kim H; Lee J; Won YY
    Ultrasonics; 2015 Aug; 61():20-4. PubMed ID: 25935317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization.
    Kirpalani DM; Suzuki K
    Ultrason Sonochem; 2011 Sep; 18(5):1012-7. PubMed ID: 21300561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of concentration characteristics in ultrasonic atomization by droplet diameter distribution.
    Yasuda K; Bando Y; Yamaguchi S; Nakamura M; Oda A; Kawase Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):37-41. PubMed ID: 15474950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system.
    Tay WH; Lau KK; Shariff AM
    Ultrason Sonochem; 2016 Nov; 33():190-196. PubMed ID: 27245970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic Atomization: A Mechanism of Tissue Fractionation.
    Simon JC; Sapozhnikov OA; Khokhlova VA; Wang YN; Crum LA; Bailey MR
    Proc Meet Acoust; 2013 May; 133(5):. PubMed ID: 34322192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of five ultrasonic transducers modified for efficient atomization.
    Matsuura H; Furukawa H; Tanikawa T; Hashimoto H
    J Acoust Soc Am; 2019 Jul; 146(1):626. PubMed ID: 31370627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation on the generation of ultrasound and formation of water fog in the ultrasonic gas atomizer.
    Kim KD; Jin DH; Choi YC
    Ultrasonics; 2020 Mar; 102():105851. PubMed ID: 31146969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation into the mechanisms of tissue atomization by high-intensity focused ultrasound.
    Simon JC; Sapozhnikov OA; Wang YN; Khokhlova VA; Crum LA; Bailey MR
    Ultrasound Med Biol; 2015 May; 41(5):1372-85. PubMed ID: 25662182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper dimer interactions on a thermomechanical superfluid (4)He fountain.
    Popov E; Eloranta J
    J Chem Phys; 2015 May; 142(20):204704. PubMed ID: 26026458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic Nonlinearity as a Mechanism for Liquid Drop Explosions in Drop-chain Fountains Generated by a Focused Ultrasound Beam.
    Annenkova EA; Sapozhnikov OA; Kreider W; Simon JC
    IEEE Int Ultrason Symp; 2016 Sep; 2016():. PubMed ID: 34650778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic atomization of distilled water.
    Gaete-Garretón L; Briceño-Gutiérrez D; Vargas-Hernández Y; Zanelli CI
    J Acoust Soc Am; 2018 Jul; 144(1):222. PubMed ID: 30075687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The heating phenomenon produced by an ultrasonic fountain.
    Li H; Li Y; Li Z
    Ultrason Sonochem; 1997 Apr; 4(2):217-8. PubMed ID: 11237045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.