BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 27150777)

  • 1. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies.
    Babgi B; Zhou M; Aksu M; Alghamdi Y; Ashokkumar M
    Ultrason Sonochem; 2016 Mar; 29():55-9. PubMed ID: 26584984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.
    Ferkous H; Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Sep; 26():30-39. PubMed ID: 25753313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water.
    Merouani S; Hamdaoui O; Boutamine Z; Rezgui Y; Guemini M
    Ultrason Sonochem; 2016 Jan; 28():382-392. PubMed ID: 26384922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation.
    Su H; Sun J; Wang C; Wang H
    Ultrason Sonochem; 2024 Jan; 102():106734. PubMed ID: 38128391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of ultrasonic frequency on multibubble sonoluminescence.
    Yasui K
    J Acoust Soc Am; 2002 Oct; 112(4):1405-13. PubMed ID: 12398448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid.
    Thiemann A; Holsteyns F; Cairós C; Mettin R
    Ultrason Sonochem; 2017 Jan; 34():663-676. PubMed ID: 27773293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y; Miyoshi N
    J Phys Chem A; 2005 Jun; 109(21):4869-72. PubMed ID: 16833832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water.
    Su H; Sun J; Wang C; Wang H
    Ultrason Sonochem; 2024 Jun; 108():106968. PubMed ID: 38941702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of O Radicals from Cavitation Bubbles under Ultrasound.
    Yasui K
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.