These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 27150777)
1. The size of active bubbles for the production of hydrogen in sonochemical reaction field. Merouani S; Hamdaoui O Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777 [TBL] [Abstract][Full Text] [Related]
2. A method for predicting the number of active bubbles in sonochemical reactors. Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247 [TBL] [Abstract][Full Text] [Related]
3. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064 [TBL] [Abstract][Full Text] [Related]
4. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748 [TBL] [Abstract][Full Text] [Related]
5. Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies. Babgi B; Zhou M; Aksu M; Alghamdi Y; Ashokkumar M Ultrason Sonochem; 2016 Mar; 29():55-9. PubMed ID: 26584984 [TBL] [Abstract][Full Text] [Related]
6. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834 [TBL] [Abstract][Full Text] [Related]
7. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water. Ferkous H; Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2015 Sep; 26():30-39. PubMed ID: 25753313 [TBL] [Abstract][Full Text] [Related]
9. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796 [TBL] [Abstract][Full Text] [Related]
10. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency. Dehane A; Merouani S; Hamdaoui O; Alghyamah A Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247 [TBL] [Abstract][Full Text] [Related]
11. Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water. Merouani S; Hamdaoui O; Boutamine Z; Rezgui Y; Guemini M Ultrason Sonochem; 2016 Jan; 28():382-392. PubMed ID: 26384922 [TBL] [Abstract][Full Text] [Related]
12. Temperature impacts on the growth of hydrogen bubbles during ultrasonic vibration-enhanced hydrogen generation. Su H; Sun J; Wang C; Wang H Ultrason Sonochem; 2024 Jan; 102():106734. PubMed ID: 38128391 [TBL] [Abstract][Full Text] [Related]
13. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995 [TBL] [Abstract][Full Text] [Related]
14. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
15. Influence of ultrasonic frequency on multibubble sonoluminescence. Yasui K J Acoust Soc Am; 2002 Oct; 112(4):1405-13. PubMed ID: 12398448 [TBL] [Abstract][Full Text] [Related]
16. The Chemical History of a Bubble. Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111 [TBL] [Abstract][Full Text] [Related]
17. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Thiemann A; Holsteyns F; Cairós C; Mettin R Ultrason Sonochem; 2017 Jan; 34():663-676. PubMed ID: 27773293 [TBL] [Abstract][Full Text] [Related]
18. Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. Tuziuti T; Yasui K; Sivakumar M; Iida Y; Miyoshi N J Phys Chem A; 2005 Jun; 109(21):4869-72. PubMed ID: 16833832 [TBL] [Abstract][Full Text] [Related]
19. Study on the influence of ultrasound on the kinetic behaviour of hydrogen bubbles produced by proton exchange membrane electrolysis with water. Su H; Sun J; Wang C; Wang H Ultrason Sonochem; 2024 Aug; 108():106968. PubMed ID: 38941702 [TBL] [Abstract][Full Text] [Related]
20. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry. Tuziuti T; Yasui K; Sivakumar M; Iida Y Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]