These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27151285)

  • 1. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization.
    Tang W; Kovalsky P; Cao B; Waite TD
    Water Res; 2016 Aug; 99():112-121. PubMed ID: 27151285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI).
    Tang W; Kovalsky P; Cao B; He D; Waite TD
    Environ Sci Technol; 2016 Oct; 50(19):10570-10579. PubMed ID: 27608070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization.
    Tang W; Kovalsky P; He D; Waite TD
    Water Res; 2015 Nov; 84():342-9. PubMed ID: 26278188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode.
    Jiang H; Zhang J; Luo K; Xing W; Du J; Dong Y; Li X; Tang W
    Sci Total Environ; 2022 Jan; 804():150166. PubMed ID: 34517327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the flow efficiency in constant-current capacitive deionization.
    Hawks SA; Knipe JM; Campbell PG; Loeb CK; Hubert MA; Santiago JG; Stadermann M
    Water Res; 2018 Feb; 129():327-336. PubMed ID: 29161663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2018 Feb; 129():394-401. PubMed ID: 29174829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI).
    Tang W; He D; Zhang C; Waite TD
    Water Res; 2017 Sep; 121():302-310. PubMed ID: 28558281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.
    Lee JY; Chaimongkalayon N; Lim J; Ha HY; Moon SH
    Water Sci Technol; 2016; 73(12):3064-71. PubMed ID: 27332854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating reverse electrodialysis with constant current operating capacitive deionization.
    Jande YAC; Kim WS
    J Environ Manage; 2014 Dec; 146():463-469. PubMed ID: 25150096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective adsorption of nitrate over chloride in microporous carbons.
    Mubita TM; Dykstra JE; Biesheuvel PM; van der Wal A; Porada S
    Water Res; 2019 Nov; 164():114885. PubMed ID: 31426005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of MOF/polypyrrole and flower-like MnO
    Kang H; Zhang D; Chen X; Zhao H; Yang D; Li Y; Bao M; Wang Z
    Water Res; 2023 Feb; 229():119441. PubMed ID: 36470045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial Utilization of Capacitive Deionization Technology for the Removal of Fluoride and Toxic Metal Ions (As
    Islam MR; Gupta SS; Jana SK; Pradeep T
    Glob Chall; 2022 Apr; 6(4):2100129. PubMed ID: 35433026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.