BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2715160)

  • 41. Fixation of vascular grafts with increased glutaraldehyde concentration enhances mechanical properties without increasing calcification.
    Sánchez DM; Gaitán DM; León AF; Mugnier J; Briceño JC
    ASAIO J; 2007; 53(3):257-62. PubMed ID: 17515713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A study of the effects of glutaraldehyde and formaldehyde on the mechanical behaviour of bovine pericardium.
    van Noort R; Yates SP; Martin TR; Barker AT; Black MM
    Biomaterials; 1982 Jan; 3(1):21-6. PubMed ID: 6802196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is zero-pressure fixation of bioprosthetic valves truly stress free?
    Vesely I; Lozon A; Talman E
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):288-98. PubMed ID: 8341070
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of delay between tissue harvest and glutaraldehyde pretreatment on mineralization of bovine pericardium used in bioprosthetic heart valves.
    Maranto AR; Schoen FJ
    J Biomed Mater Res; 1988 Sep; 22(9):819-25. PubMed ID: 3146571
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of suturing on the mechanical properties of bovine pericardium--implications for cardiac valve bioprosthesis.
    Lim KO; Cheong KC
    Med Eng Phys; 1994 Nov; 16(6):526-30. PubMed ID: 7858787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Response of heterograft heart valve biomaterials to moderate cyclic loading.
    Sun W; Sacks M; Fulchiero G; Lovekamp J; Vyavahare N; Scott M
    J Biomed Mater Res A; 2004 Jun; 69(4):658-69. PubMed ID: 15162408
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Repair of thoracoabdominal wall defects in dogs using a bovine pericardium bioprosthesis].
    Santillán-Doherty P; Jasso-Victoria R; Sotres-Vega A; Olmos R; Arreola JL; Garc-ia D; Vanda B; Gaxiola M
    Rev Invest Clin; 1995; 47(6):439-46. PubMed ID: 8850141
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional analysis of bioprosthetic heart valves.
    Arcidiacono G; Corvi A; Severi T
    J Biomech; 2005 Jul; 38(7):1483-90. PubMed ID: 15922759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microscopic study of normal parietal pericardium and unimplanted Puig-Zerbini pericardial valvular heterografts.
    Allen DJ; DiDio LJ; Zacharias A; Fentie I; McGrath AJ; Puig LB; Pomerantzeff PN; Zerbini EJ
    J Thorac Cardiovasc Surg; 1984 Jun; 87(6):845-55. PubMed ID: 6727408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Examination of fixative penetration in glutaraldehyde-treated bovine pericardium by stratigraphic analysis of shrinkage temperature measurements using differential scanning calorimetry.
    Fisher J; Gorham SD; Howie AM; Wheatley DJ
    Life Support Syst; 1987; 5(3):189-93. PubMed ID: 3121939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of the compressive buckling of porcine aortic valve cusps and bovine pericardium.
    Vesely I; Mako WJ
    J Heart Valve Dis; 1998 Jan; 7(1):34-9. PubMed ID: 9502137
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reducing the variability in durability of heart valve bioprostheses. Key factor for future improvement.
    Gabbay S; Welch H
    ASAIO Trans; 1988; 34(4):1022-6. PubMed ID: 3219248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pericardial heterografts. Toward quality control of the mechanical properties of glutaraldehyde-fixed leaflets.
    Trowbridge EA; Roberts KM; Crofts CE; Lawford PV
    J Thorac Cardiovasc Surg; 1986 Jul; 92(1):21-8. PubMed ID: 3088334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues.
    Waldman SD; Lee JM
    Biomaterials; 2005 Dec; 26(35):7504-13. PubMed ID: 16002136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Octanediol treatment of glutaraldehyde fixed bovine pericardium: evidence of anticalcification efficacy in the subcutaneous rat model.
    Pettenazzo E; Valente M; Thiene G
    Eur J Cardiothorac Surg; 2008 Aug; 34(2):418-22. PubMed ID: 18550382
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The extension rate independence of the hysteresis in glutaraldehyde-fixed bovine pericardium.
    Trowbridge EA; Crofts CE
    Biomaterials; 1987 May; 8(3):201-6. PubMed ID: 3111555
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toxic reactions evoked by glutaraldehyde-fixed pericardium and cardiac valve tissue bioprosthesis.
    Gendler E; Gendler S; Nimni ME
    J Biomed Mater Res; 1984 Sep; 18(7):727-36. PubMed ID: 6085799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Porcine pulmonary and aortic valves: a comparison of their tensile viscoelastic properties at physiological strain rates.
    Leeson-Dietrich J; Boughner D; Vesely I
    J Heart Valve Dis; 1995 Jan; 4(1):88-94. PubMed ID: 7742995
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pathological effects of processed bovine pericardial scaffolds--a comparative in vivo evaluation.
    Thampi P; Nair D; R L; N V; Venugopal S; Ramachandra U
    Artif Organs; 2013 Jul; 37(7):600-5. PubMed ID: 23452255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.