These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 2715160)

  • 61. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content.
    Mendoza-Novelo B; Avila EE; Cauich-Rodríguez JV; Jorge-Herrero E; Rojo FJ; Guinea GV; Mata-Mata JL
    Acta Biomater; 2011 Mar; 7(3):1241-8. PubMed ID: 21094703
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanics of native bovine pericardium. I. The multiangular behaviour of strength and stiffness of the tissue.
    Zioupos P; Barbenel JC
    Biomaterials; 1994 Apr; 15(5):366-73. PubMed ID: 8061128
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The tearing strength of glutaraldehyde fixed bovine pericardium.
    Trowbridge EA; Crofts CE
    Biomater Artif Cells Artif Organs; 1989; 17(3):315-28. PubMed ID: 2819258
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A natural compound (reuterin) produced by Lactobacillus reuteri for biological-tissue fixation.
    Sung HW; Chen CN; Liang HF; Hong MH
    Biomaterials; 2003 Apr; 24(8):1335-47. PubMed ID: 12527275
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Two-dimensional mechanical and ultrastructural correlates of bovine pericardium for prosthetic valves.
    Liao KX; Frater RW; Stevenson-Smith W; Nikolic SD; Macaluso F; Yellin EL
    ASAIO Trans; 1991; 37(3):M349-51. PubMed ID: 1751181
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of storage on tensile material properties of bovine liver.
    Lu YC; Kemper AR; Untaroiu CD
    J Mech Behav Biomed Mater; 2014 Jan; 29():339-49. PubMed ID: 24148876
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mechanical and optical anisotropy of bovine pericardium.
    Zioupos P; Barbenel JC; Fisher J
    Med Biol Eng Comput; 1992 Jan; 30(1):76-82. PubMed ID: 1640759
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evaluation of kangaroo pericardium as an alternative substitute for reconstructive cardiac surgery.
    Neethling WM; Cooper S; Van Den Heever JJ; Hough J; Hodge AJ
    J Cardiovasc Surg (Torino); 2002 Jun; 43(3):301-6. PubMed ID: 12055560
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Brillouin confocal microscopy to determine biomechanical properties of SULEEI-treated bovine pericardium for application in cardiac surgery.
    Jannasch A; Rix J; Welzel C; Schackert G; Kirsch M; König U; Koch E; Matschke K; Tugtekin SM; Dittfeld C; Galli R
    Clin Hemorheol Microcirc; 2021; 79(1):179-192. PubMed ID: 34487036
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanical properties of solvent-dehydrated bovine pericardium xeno graft for dura mater repair.
    Quaglini V; Villa T
    J Appl Biomater Biomech; 2007; 5(1):34-40. PubMed ID: 20799195
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Collagen fibre orientation and dispersion govern ultimate tensile strength, stiffness and the fatigue performance of bovine pericardium.
    Whelan A; Duffy J; Gaul RT; O'Reilly D; Nolan DR; Gunning P; Lally C; Murphy BP
    J Mech Behav Biomed Mater; 2019 Feb; 90():54-60. PubMed ID: 30343171
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mapping of bovine pericardium to enable a standardized acquirement of material for medical implants.
    Stieglmeier F; Grab M; König F; Büch J; Hagl C; Thierfelder N
    J Mech Behav Biomed Mater; 2021 Jun; 118():104432. PubMed ID: 33853036
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Native Bovine and Porcine Pericardia Respond to Load With Additive Recruitment of Collagen Fibers.
    Bagno A; Aguiari P; Fiorese M; Iop L; Spina M; Gerosa G
    Artif Organs; 2018 May; 42(5):540-548. PubMed ID: 29280157
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biocompatibility study of biological tissues fixed by a natural compound (reuterin) produced by Lactobacillus reuteri.
    Sung HW; Chen CN; Chang Y; Liang HF
    Biomaterials; 2002 Aug; 23(15):3203-14. PubMed ID: 12102192
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Local variation in the tearing strength of chemically modified pericardium.
    Crofts CE; Trowbridge EA
    Biomaterials; 1989 May; 10(4):230-4. PubMed ID: 2742950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The standardisation of gauge length: its influence on the relative extensibility of natural and chemically modified pericardium.
    Trowbridge EA; Crofts CE
    J Biomech; 1986; 19(12):1023-33. PubMed ID: 3102496
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Supercritical carbon dioxide decellularised pericardium: Mechanical and structural characterisation for applications in cardio-thoracic surgery.
    Halfwerk FR; Rouwkema J; Gossen JA; Grandjean JG
    J Mech Behav Biomed Mater; 2018 Jan; 77():400-407. PubMed ID: 29020662
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Degradation potential of biological tissues fixed with various fixatives: an in vitro study.
    Sung HW; Hsu CS; Wang SP; Hsu HL
    J Biomed Mater Res; 1997 May; 35(2):147-55. PubMed ID: 9135163
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pericardial tissue for cardiovascular application: an in-vitro evaluation of established and advanced production processes.
    Grefen L; König F; Grab M; Hagl C; Thierfelder N
    J Mater Sci Mater Med; 2018 Nov; 29(11):172. PubMed ID: 30392024
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Orthotropic mechanical properties of chemically treated bovine pericardium.
    Sacks MS; Chuong CJ
    Ann Biomed Eng; 1998; 26(5):892-902. PubMed ID: 9779962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.