These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 27151677)
21. Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Wang W; Deng Z; Tan H; Cao L Int J Phytoremediation; 2013; 15(5):488-97. PubMed ID: 23488174 [TBL] [Abstract][Full Text] [Related]
22. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
23. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case. Wang FY; Lin XG; Yin R Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687 [TBL] [Abstract][Full Text] [Related]
24. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
25. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039 [TBL] [Abstract][Full Text] [Related]
26. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Rizvi A; Khan MS Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647 [TBL] [Abstract][Full Text] [Related]
27. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon. Lum AF; Ngwa ES; Chikoye D; Suh CE Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226 [TBL] [Abstract][Full Text] [Related]
28. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals. Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183 [TBL] [Abstract][Full Text] [Related]
29. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Gunawardana B; Singhal N; Johnson A Int J Phytoremediation; 2011 Mar; 13(3):215-32. PubMed ID: 21598788 [TBL] [Abstract][Full Text] [Related]
30. Application of rhizobium inoculation in regulating heavy metals in legumes: A meta-analysis. Wang S; Liu J; Liu Y; Tian C Sci Total Environ; 2024 Oct; 945():173923. PubMed ID: 38880144 [TBL] [Abstract][Full Text] [Related]
31. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Ruiz E; Rodríguez L; Alonso-Azcárate J Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427 [TBL] [Abstract][Full Text] [Related]
32. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Brunner I; Luster J; Günthardt-Goerg MS; Frey B Environ Pollut; 2008 Apr; 152(3):559-68. PubMed ID: 17707113 [TBL] [Abstract][Full Text] [Related]
33. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related]
34. Characterization of fava bean (Vicia faba L.) genotypes for phytoremediation of cadmium and lead co-contaminated soils coupled with agro-production. Tang L; Hamid Y; Zehra A; Sahito ZA; He Z; Hussain B; Gurajala HK; Yang X Ecotoxicol Environ Saf; 2019 Apr; 171():190-198. PubMed ID: 30605848 [TBL] [Abstract][Full Text] [Related]
35. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Conesa HM; Faz A; Arnaldos R Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952 [TBL] [Abstract][Full Text] [Related]
36. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Wani PA; Khan MS; Zaidi A Bull Environ Contam Toxicol; 2008 Aug; 81(2):152-8. PubMed ID: 18368281 [TBL] [Abstract][Full Text] [Related]
37. Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Yang B; Shu WS; Ye ZH; Lan CY; Wong MH Chemosphere; 2003 Sep; 52(9):1593-600. PubMed ID: 12867192 [TBL] [Abstract][Full Text] [Related]
38. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina). Marinho CH; Giarratano E; Esteves JL; Narvarte MA; Gil MN Environ Sci Pollut Res Int; 2017 Mar; 24(7):6724-6735. PubMed ID: 28091989 [TBL] [Abstract][Full Text] [Related]
39. Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. Lee SH; Ji W; Lee WS; Koo N; Koh IH; Kim MS; Park JS J Environ Manage; 2014 Jun; 139():15-21. PubMed ID: 24681360 [TBL] [Abstract][Full Text] [Related]
40. Remediation of lead and cadmium-contaminated soils. Salama AK; Osman KA; Gouda NA Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]