These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27151767)

  • 1. Computational investigation of dynamical transitions in Trp-cage miniprotein powders.
    Kim SB; Gupta DR; Debenedetti PG
    Sci Rep; 2016 May; 6():25612. PubMed ID: 27151767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular origin and hydration dependence of protein anharmonicity: an elastic neutron scattering study.
    Schiró G; Caronna C; Natali F; Cupane A
    Phys Chem Chem Phys; 2010 Sep; 12(35):10215-20. PubMed ID: 20668739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replica exchange simulation of reversible folding/unfolding of the Trp-cage miniprotein in explicit solvent: on the structure and possible role of internal water.
    Paschek D; Nymeyer H; García AE
    J Struct Biol; 2007 Mar; 157(3):524-33. PubMed ID: 17293125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the environment on the protein dynamical transition: a neutron scattering study.
    Paciaroni A; Cinelli S; Onori G
    Biophys J; 2002 Aug; 83(2):1157-64. PubMed ID: 12124295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen-bond dynamics at the bio-water interface in hydrated proteins: a molecular-dynamics study.
    Nandi PK; English NJ; Futera Z; Benedetto A
    Phys Chem Chem Phys; 2016 Dec; 19(1):318-329. PubMed ID: 27905589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins.
    Fitter J
    Biophys J; 1999 Feb; 76(2):1034-42. PubMed ID: 9916035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy.
    Fomina M; Schirò G; Cupane A
    Biophys Chem; 2014 Jan; 185():25-31. PubMed ID: 24309207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.
    Miao Y; Yi Z; Glass DC; Hong L; Tyagi M; Baudry J; Jain N; Smith JC
    J Am Chem Soc; 2012 Dec; 134(48):19576-9. PubMed ID: 23140218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamical transition of proteins, concepts and misconceptions.
    Doster W
    Eur Biophys J; 2008 Jun; 37(5):591-602. PubMed ID: 18270694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration affects both harmonic and anharmonic nature of protein dynamics.
    Nakagawa H; Joti Y; Kitao A; Kataoka M
    Biophys J; 2008 Sep; 95(6):2916-23. PubMed ID: 18556761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change of caged dynamics at T(g) in hydrated proteins: trend of mean squared displacements after correcting for the methyl-group rotation contribution.
    Ngai KL; Capaccioli S; Paciaroni A
    J Chem Phys; 2013 Jun; 138(23):235102. PubMed ID: 23802985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature evolution of Trp-cage folding pathways: An analysis by dividing the probability flux field into stream tubes.
    Andryushchenko VA; Chekmarev SF
    J Biol Phys; 2017 Dec; 43(4):565-583. PubMed ID: 28983809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrated myoglobin's anharmonic fluctuations are not primarily due to dihedral transitions.
    Steinbach PJ; Brooks BR
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):55-9. PubMed ID: 8552674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature- and hydration-dependent internal dynamics of stripped human erythrocyte vesicles studied by incoherent neutron scattering.
    Combet S; Zanotti JM; Bellissent-Funel MC
    Biochim Biophys Acta; 2011 Feb; 1810(2):202-10. PubMed ID: 21059380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trp-cage: folding free energy landscape in explicit water.
    Zhou R
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13280-5. PubMed ID: 14581616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of the amino acid side chain and backbone contributions to protein anharmonicity.
    Schiró G; Caronna C; Natali F; Cupane A
    J Am Chem Soc; 2010 Feb; 132(4):1371-6. PubMed ID: 20067251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature- and hydration-dependent protein dynamics in photosystem II of green plants studied by quasielastic neutron scattering.
    Pieper J; Hauss T; Buchsteiner A; Baczyński K; Adamiak K; Lechner RE; Renger G
    Biochemistry; 2007 Oct; 46(40):11398-409. PubMed ID: 17867656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of Protein Glass Transition to the Choice of Water Model.
    Gupta M; Chakravarty C; Bandyopadhyay S
    J Chem Theory Comput; 2016 Nov; 12(11):5643-5655. PubMed ID: 27728761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of hydration water on the dynamics of side chains of hydrophobic peptides: from dry powder to highly concentrated solutions.
    Russo D; Teixeira J; Ollivier J
    J Chem Phys; 2009 Jun; 130(23):235101. PubMed ID: 19548762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical transition and heterogeneous hydration dynamics in RNA.
    Yoon J; Lin JC; Hyeon C; Thirumalai D
    J Phys Chem B; 2014 Jul; 118(28):7910-9. PubMed ID: 24762118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.