These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27151859)

  • 21. Unveiling the Complex Effects of H
    Ma S; Wang J; Huang J; Zhou Z; Peng Z
    J Phys Chem Lett; 2018 Jun; 9(12):3333-3339. PubMed ID: 29792436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.
    Guo Z; Li C; Liu J; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7505-7509. PubMed ID: 28524448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Operando observation of the gold-electrolyte interface in Li-O2 batteries.
    Gittleson FS; Ryu WH; Taylor AD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19017-25. PubMed ID: 25318060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical investigation of the role of MnO2 nanorod catalysts in water containing and anhydrous electrolytes for Li-O2 battery applications.
    Geaney H; O'Dwyer C
    Phys Chem Chem Phys; 2015 Mar; 17(10):6748-59. PubMed ID: 25640321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable Redox Mediators for Li-O
    Leverick G; Feng S; Acosta P; Acquaviva S; Bardé F; Cotte S; Shao-Horn Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6689-6701. PubMed ID: 35099933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells.
    Meini S; Tsiouvaras N; Schwenke KU; Piana M; Beyer H; Lange L; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(27):11478-93. PubMed ID: 23748698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress in Developing a LiOH-Based Reversible Nonaqueous Lithium-Air Battery.
    Gao Z; Temprano I; Lei J; Tang L; Li J; Grey CP; Liu T
    Adv Mater; 2023 Jan; 35(1):e2201384. PubMed ID: 36063023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling the Reaction Interfaces and Intermediates of Ru-Catalyzed LiOH Decomposition in DMSO-Based Li-O
    Tang L; Li J; Zhang Y; Gao Z; Chen J; Liu T
    J Phys Chem Lett; 2022 Jan; 13(2):471-478. PubMed ID: 34995456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.
    Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electronic structure of lithium battery interphase compounds: comparison between inelastic x-ray scattering measurements and theory.
    Fister TT; Schmidt M; Fenter P; Johnson CS; Slater MD; Chan MK; Shirley EL
    J Chem Phys; 2011 Dec; 135(22):224513. PubMed ID: 22168709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Origin of Solvent Deprotonation in LiI-added Aprotic Electrolytes for Li-O
    Wang A; Wu X; Zou Z; Qiao Y; Wang D; Xing L; Chen Y; Lin Y; Avdeev M; Shi S
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202217354. PubMed ID: 36749300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binder-free graphene foams for O2 electrodes of Li-O2 batteries.
    Zhang W; Zhu J; Ang H; Zeng Y; Xiao N; Gao Y; Liu W; Hng HH; Yan Q
    Nanoscale; 2013 Oct; 5(20):9651-8. PubMed ID: 23963594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring the Electrochemical Processes in the Lithium-Air Battery by Solid State NMR Spectroscopy.
    Leskes M; Moore AJ; Goward GR; Grey CP
    J Phys Chem C Nanomater Interfaces; 2013 Dec; 117(51):26929-26939. PubMed ID: 24489976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5).
    Hy S; Felix F; Rick J; Su WN; Hwang BJ
    J Am Chem Soc; 2014 Jan; 136(3):999-1007. PubMed ID: 24364760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reversible and higher-rate Li-O2 battery.
    Peng Z; Freunberger SA; Chen Y; Bruce PG
    Science; 2012 Aug; 337(6094):563-6. PubMed ID: 22821984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of interfacial layer and long-term cyclability of Li-O₂ batteries.
    Nasybulin EN; Xu W; Mehdi BL; Thomsen E; Engelhard MH; Massé RC; Bhattacharya P; Gu M; Bennett W; Nie Z; Wang C; Browning ND; Zhang JG
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14141-51. PubMed ID: 25068384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unravelling the Complex LiOH-Based Cathode Chemistry in Lithium-Oxygen Batteries.
    Zhang X; Dong P; Noh S; Zhang X; Cha Y; Ha S; Jang JH; Song MK
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202212942. PubMed ID: 36413636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The carbon electrode in nonaqueous Li-O2 cells.
    Ottakam Thotiyl MM; Freunberger SA; Peng Z; Bruce PG
    J Am Chem Soc; 2013 Jan; 135(1):494-500. PubMed ID: 23190204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.