BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

793 related articles for article (PubMed ID: 27152337)

  • 1. Cavity-enhanced coherent light scattering from a quantum dot.
    Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ
    Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent storage and phase modulation of single hard-x-ray photons using nuclear excitons.
    Liao WT; Pálffy A; Keitel CH
    Phys Rev Lett; 2012 Nov; 109(19):197403. PubMed ID: 23215425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detection.
    Song X; Declair S; Meier T; Zrenner A; Förstner J
    Opt Express; 2012 Jun; 20(13):14130-6. PubMed ID: 22714477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.
    Thyrrestrup H; Kiršanskė G; Le Jeannic H; Pregnolato T; Zhai L; Raahauge L; Midolo L; Rotenberg N; Javadi A; Schott R; Wieck AD; Ludwig A; Löbl MC; Söllner I; Warburton RJ; Lodahl P
    Nano Lett; 2018 Mar; 18(3):1801-1806. PubMed ID: 29494160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Transparency Induced by a Largely Purcell Enhanced Quantum Dot in a Polarization-Degenerate Cavity.
    Singh H; Farfurnik D; Luo Z; Bracker AS; Carter SG; Waks E
    Nano Lett; 2022 Oct; 22(19):7959-7964. PubMed ID: 36129824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source.
    Uppu R; Eriksen HT; Thyrrestrup H; Uğurlu AD; Wang Y; Scholz S; Wieck AD; Ludwig A; Löbl MC; Warburton RJ; Lodahl P; Midolo L
    Nat Commun; 2020 Jul; 11(1):3782. PubMed ID: 32728025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.
    Ding X; He Y; Duan ZC; Gregersen N; Chen MC; Unsleber S; Maier S; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW
    Phys Rev Lett; 2016 Jan; 116(2):020401. PubMed ID: 26824530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic reshaping of single-photon spectra using cross-phase modulation.
    Matsuda N
    Sci Adv; 2016 Mar; 2(3):e1501223. PubMed ID: 27051862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system.
    Münch S; Reitzenstein S; Franeck P; Löffler A; Heindel T; Höfling S; Worschech L; Forchel A
    Opt Express; 2009 Jul; 17(15):12821-8. PubMed ID: 19654688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source.
    Kreinberg S; Grbešić T; Strauß M; Carmele A; Emmerling M; Schneider C; Höfling S; Porte X; Reitzenstein S
    Light Sci Appl; 2018; 7():41. PubMed ID: 30839591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic photon pairs and coherent optical control of a single quantum dot.
    Jayakumar H; Predojević A; Huber T; Kauten T; Solomon GS; Weihs G
    Phys Rev Lett; 2013 Mar; 110(13):135505. PubMed ID: 23581338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared.
    Jiang P; Schroeder T; Bath M; Lesnyak V; Gaponik N; Eychmüller A; Benson O
    Opt Express; 2012 May; 20(10):11536-47. PubMed ID: 22565773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. III-V quantum light source and cavity-QED on silicon.
    Luxmoore IJ; Toro R; Del Pozo-Zamudio O; Wasley NA; Chekhovich EA; Sanchez AM; Beanland R; Fox AM; Skolnick MS; Liu HY; Tartakovskii AI
    Sci Rep; 2013; 3():1239. PubMed ID: 23393621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-brightness single photon source from a quantum dot in a directional-emission nanocavity.
    Toishi M; Englund D; Faraon A; Vucković J
    Opt Express; 2009 Aug; 17(17):14618-26. PubMed ID: 19687940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity.
    McCutcheon MW; Chang DE; Zhang Y; Lukin MD; Loncar M
    Opt Express; 2009 Dec; 17(25):22689-703. PubMed ID: 20052195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic entanglement and violation of Bell's inequalities between two spatially separated quantum dots in a planar photonic crystal system.
    Yao P; Hughes S
    Opt Express; 2009 Jul; 17(14):11505-14. PubMed ID: 19582066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Fluorescence of an InGaAs Quantum Dot in a Planar Cavity Using Orthogonal Excitation and Detection.
    Chen D; Lander GR; Flagg EB
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29053692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.
    Wei HR; Deng FG
    Opt Express; 2013 Jul; 21(15):17671-85. PubMed ID: 23938640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.