These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27152376)

  • 21. Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures.
    Xie L; Wang T; He C; Sun Z; Peng Q
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31330928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen adsorption on zigzag (8,0) boron nitride nanotubes.
    Wu X; Yang J; Hou JG; Zhu Q
    J Chem Phys; 2004 Nov; 121(17):8481-5. PubMed ID: 15511171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuum modelling for carbon and boron nitride nanostructures.
    Thamwattana N; Hill JM
    J Phys Condens Matter; 2007 Oct; 19(40):406209. PubMed ID: 22049108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural characterizations and electronic properties of boron nitride nanotube crystalline bundles.
    Zheng F; Zhou G; Hao S; Duan W
    J Chem Phys; 2005 Sep; 123(12):124716. PubMed ID: 16392520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear optical properties of carbon nitride nanotubes.
    Chai GL; Lin CS; Wei J; Zhang MY; Cheng WD
    Phys Chem Chem Phys; 2012 Jan; 14(2):835-9. PubMed ID: 22120498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear optical properties of aluminum nitride nanotubes doped by excess electron: a first principle study.
    Yuan TM; Liu SL; Liu ZB; Wang X; Li WZ; Cheng JB; Li QZ
    J Mol Model; 2018 Jul; 24(8):205. PubMed ID: 30008049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Density of states of helically symmetric boron carbon nitride nanotubes.
    Carvalho AC; Bezerra CG; Lawlor JA; Ferreira MS
    J Phys Condens Matter; 2014 Jan; 26(1):015303. PubMed ID: 24275247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the nanowire length on large second-order nonlinear optical responses: a theoretical investigation of the thinnest doped beryllium nanowires with IR and UV working wavebands.
    Li J; Chen W; Liu J; Sun W; Li Z; Li Y
    Dalton Trans; 2021 Apr; 50(13):4613-4622. PubMed ID: 33710193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Li2 trapped inside tubiform [n] boron nitride clusters (n=4-8): structures and first hyperpolarizability.
    Ma F; Zhou ZJ; Liu YT
    Chemphyschem; 2012 Apr; 13(5):1307-12. PubMed ID: 22378617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Junctions between a boron nitride nanotube and a boron nitride sheet.
    Baowan D; Cox BJ; Hill JM
    Nanotechnology; 2008 Feb; 19(7):075704. PubMed ID: 21817652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An intramolecular-locked strategy for designing nonlinear optical materials with remarkable first hyperpolarizability.
    Li B; Xiao T; Shen H; Deng M; Gu FL
    Phys Chem Chem Phys; 2022 Sep; 24(36):21800-21805. PubMed ID: 36056682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The nitrogen edge-doped effect on the static first hyperpolarizability of the supershort single-walled carbon nanotube.
    Xu HL; Wang FF; Li ZR; Wang BQ; Wu D; Chen W; Yu GT; Gu FL; Aoki Y
    J Comput Chem; 2009 May; 30(7):1128-34. PubMed ID: 18942737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport properties through hexagonal boron nitride clusters embedded in graphene nanoribbons.
    Silva FW; Cruz-Silva E; Terrones M; Terrones H; Barros EB
    Nanotechnology; 2016 May; 27(18):185203. PubMed ID: 27004996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.
    Yumura T; Yamamoto W
    Phys Chem Chem Phys; 2017 Sep; 19(36):24819-24828. PubMed ID: 28868534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Boron nitride nanotube as a delivery system for platinum drugs: Drug encapsulation and diffusion coefficient prediction.
    Khatti Z; Hashemianzadeh SM
    Eur J Pharm Sci; 2016 Jun; 88():291-7. PubMed ID: 27084121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boron nitride nanotube reinforced hydroxyapatite composite: mechanical and tribological performance and in-vitro biocompatibility to osteoblasts.
    Lahiri D; Singh V; Benaduce AP; Seal S; Kos L; Agarwal A
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):44-56. PubMed ID: 21094479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boron nitride nanotubes and nanosheets.
    Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C
    ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ mechanical property measurements of amorphous carbon-boron nitride nanotube nanostructures.
    Kim JW; Núñez JC; Siochi EJ; Wise KE; Lin Y; Connell JW; Smith MW
    Nanotechnology; 2012 Jan; 23(3):035701. PubMed ID: 22172920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-temperature thermal stability and axial compressive properties of a coaxial carbon nanotube inside a boron nitride nanotube.
    Liew KM; Yuan J
    Nanotechnology; 2011 Feb; 22(8):085701. PubMed ID: 21242624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.