These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27152376)

  • 41. The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.
    Zhao JX; Ding YH
    Nanotechnology; 2009 Feb; 20(8):085704. PubMed ID: 19417465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Double-helix structure in multiwall boron nitride nanotubes.
    Celik-Aktas A; Zuo JM; Stubbins JF; Tang C; Bando Y
    Acta Crystallogr A; 2005 Nov; 61(Pt 6):533-41. PubMed ID: 16244402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of carbon doping on electromechanical response of boron nitride nanosheets.
    Kundalwal SI; Choyal VK; Luhadiya N; Choyal V
    Nanotechnology; 2020 Oct; 31(40):405710. PubMed ID: 32706767
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ambient carbon dioxide capture by boron-rich boron nitride nanotube.
    Choi H; Park YC; Kim YH; Lee YS
    J Am Chem Soc; 2011 Feb; 133(7):2084-7. PubMed ID: 21287992
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films.
    Liu XM; Gutiérrez HR; Eklund PC
    J Phys Condens Matter; 2010 Aug; 22(33):334213. PubMed ID: 21386503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Continuum modeling of boron nitride nanotubes.
    Song J; Wu J; Huang Y; Hwang KC
    Nanotechnology; 2008 Nov; 19(44):445705. PubMed ID: 21832747
    [TBL] [Abstract][Full Text] [Related]  

  • 47. All-metal electride molecules CuAg@Ca7M (M = Be, Mg, and Ca) with multi-excess electrons and all-metal polyanions: molecular structures and bonding modes as well as large infrared nonlinear optical responses.
    He HM; Li Y; Sun WM; Wang JJ; Wu D; Zhong RL; Zhou ZJ; Li ZR
    Dalton Trans; 2016 Feb; 45(6):2656-65. PubMed ID: 26740006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature.
    Rimola A; Sodupe M
    Phys Chem Chem Phys; 2013 Aug; 15(31):13190-8. PubMed ID: 23824299
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boron-Substituted Coronene: Intriguing Geometric and Electronic Properties, and Large Nonlinear Optical Response.
    Sun WM; Chen CY; Li CY; Wu D; Kang J; Li Y; Li ZR
    Chemphyschem; 2018 Oct; 19(19):2518-2524. PubMed ID: 29943404
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lithium salt electride with an excess electron pair--a class of nonlinear optical molecules for extraordinary first hyperpolarizability.
    Ma F; Li ZR; Xu HL; Li ZJ; Li ZS; Aoki Y; Gu FL
    J Phys Chem A; 2008 Nov; 112(45):11462-7. PubMed ID: 18925732
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.
    Kang JH; Sauti G; Park C; Yamakov VI; Wise KE; Lowther SE; Fay CC; Thibeault SA; Bryant RG
    ACS Nano; 2015 Dec; 9(12):11942-50. PubMed ID: 26529472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new type of organic-inorganic hybrid NLO-phore with large off-diagonal first hyperpolarizability tensors: a two-dimensional approach.
    Muhammad S; Xu H; Su Z; Fukuda K; Kishi R; Shigeta Y; Nakano M
    Dalton Trans; 2013 Nov; 42(42):15053-62. PubMed ID: 23995975
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electron emission originated from free-electron-like states of alkali-doped boron-nitride nanotubes.
    Yan B; Park C; Ihm J; Zhou G; Duan W; Park N
    J Am Chem Soc; 2008 Dec; 130(50):17012-5. PubMed ID: 19012383
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis.
    Kang HS
    J Phys Chem B; 2006 Mar; 110(10):4621-8. PubMed ID: 16526693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spin engineering of triangulenes and application for nano nonlinear optical materials design.
    Yang CC; Zheng XL; Chen J; Tian WQ; Li WQ; Yang L
    Phys Chem Chem Phys; 2022 Aug; 24(31):18529-18542. PubMed ID: 35899847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm.
    Huang Y; Lin J; Tang C; Bando Y; Zhi C; Zhai T; Dierre B; Sekiguchi T; Golberg D
    Nanotechnology; 2011 Apr; 22(14):145602. PubMed ID: 21346299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Static and dynamic properties of single-walled boron nitride nanotubes.
    Li C; Chou TW
    J Nanosci Nanotechnol; 2006 Jan; 6(1):54-60. PubMed ID: 16573069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons.
    Cloke RR; Marangoni T; Nguyen GD; Joshi T; Rizzo DJ; Bronner C; Cao T; Louie SG; Crommie MF; Fischer FR
    J Am Chem Soc; 2015 Jul; 137(28):8872-5. PubMed ID: 26153349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural characteristics of hydrogenated carbon and boron nitride nanotubes: impact of H-H interactions.
    Tanskanen JT; Linnolahti M; Karttunen AJ; Pakkanen TA
    Chemphyschem; 2008 Nov; 9(16):2390-6. PubMed ID: 18830994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.