BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27152578)

  • 1. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.
    Heng S; McDevitt CA; Kostecki R; Morey JR; Eijkelkamp BA; Ebendorff-Heidepriem H; Monro TM; Abell AD
    ACS Appl Mater Interfaces; 2016 May; 8(20):12727-32. PubMed ID: 27152578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructured optical fibers and live cells: a water-soluble, photochromic zinc sensor.
    Heng S; McDevitt CA; Stubing DB; Whittall JJ; Thompson JG; Engler TK; Abell AD; Monro TM
    Biomacromolecules; 2013 Oct; 14(10):3376-9. PubMed ID: 23980997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructured optical fiber-based luminescent biosensing: Is there any light at the end of the tunnel? - A review.
    Pidenko SA; Burmistrova NA; Shuvalov AA; Chibrova AA; Skibina YS; Goryacheva IY
    Anal Chim Acta; 2018 Aug; 1019():14-24. PubMed ID: 29625680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions.
    Heng S; Mak AM; Stubing DB; Monro TM; Abell AD
    Anal Chem; 2014 Apr; 86(7):3268-72. PubMed ID: 24617734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber.
    Warren-Smith SC; Heng S; Ebendorff-Heidepriem H; Abell AD; Monro TM
    Langmuir; 2011 May; 27(9):5680-5. PubMed ID: 21469740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced electron transfer based ion sensing within an optical fiber.
    Englich FV; Foo TC; Richardson AC; Ebendorff-Heidepriem H; Sumby CJ; Monro TM
    Sensors (Basel); 2011; 11(10):9560-72. PubMed ID: 22163712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrumentation for fluorescence-based fiber optic biosensors.
    Thompson RB; Zeng HH; Ohnemus D; McCranor B; Cramer M; Moffett J
    Methods Enzymol; 2008; 450():311-37. PubMed ID: 19152867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors.
    Chiavaioli F; Gouveia CAJ; Jorge PAS; Baldini F
    Biosensors (Basel); 2017 Jun; 7(2):. PubMed ID: 28635665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposed-core microstructured optical fibers for real-time fluorescence sensing.
    Warren-Smith SC; Ebendorff-Heidepriem H; Foo TC; Moore R; Davis C; Monro TM
    Opt Express; 2009 Oct; 17(21):18533-42. PubMed ID: 20372584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optical fiber-based sensor array for the monitoring of zinc and copper ions in aqueous environments.
    Kopitzke S; Geissinger P
    Sensors (Basel); 2014 Feb; 14(2):3077-94. PubMed ID: 24549250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Functionalization of Exposed Core Glass Optical Fiber for Metal Ion Sensing.
    Bachhuka A; Heng S; Vasilev K; Kostecki R; Abell A; Ebendorff-Heidepriem H
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30999613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New highly sensitive and selective catalytic DNA biosensors for metal ions.
    Lu Y; Liu J; Li J; Bruesehoff PJ; Pavot CM; Brown AK
    Biosens Bioelectron; 2003 May; 18(5-6):529-40. PubMed ID: 12706559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers.
    Emiliyanov G; Høiby PE; Pedersen LH; Bang O
    Sensors (Basel); 2013 Mar; 13(3):3242-51. PubMed ID: 23529122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards biochips using microstructured optical fiber sensors.
    Rindorf L; Høiby PE; Jensen JB; Pedersen LH; Bang O; Geschke O
    Anal Bioanal Chem; 2006 Aug; 385(8):1370-5. PubMed ID: 16761126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fiber-tip label-free biological sensing platform: a practical approach toward in-vivo sensing.
    François A; Reynolds T; Monro TM
    Sensors (Basel); 2015 Jan; 15(1):1168-81. PubMed ID: 25585104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructured Optical Fiber-Enhanced Light-Matter Interaction Enables Highly Sensitive Exosome-Based Liquid Biopsy of Breast Cancer.
    Liu Z; Zhang W; Zhang X; Wang S; Xia Z; Guo X; Zhao Y; Wang P; Wang XH
    Anal Chem; 2023 Jan; 95(2):1095-1105. PubMed ID: 36600563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing.
    Frosz MH; Stefani A; Bang O
    Opt Express; 2011 May; 19(11):10471-84. PubMed ID: 21643302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Coupling on an Optical Microfiber Surface: Enabling Single-Molecule and Noninvasive Dopamine Detection.
    Huang Y; Chen P; Zhou L; Zheng J; Wu H; Liang J; Xiao A; Li J; Guan BO
    Adv Mater; 2023 Aug; 35(33):e2304116. PubMed ID: 37342974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring and Imaging Metal Ions With Fluorescence-Based Biosensors: Speciation, Selectivity, Kinetics, and Other Issues.
    Thompson RB; Fierke CA
    Methods Enzymol; 2017; 589():281-299. PubMed ID: 28336067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers.
    Warren-Smith SC; Nguyen LV; Lang C; Ebendorff-Heidepriem H; Monro TM
    Opt Express; 2016 Feb; 24(4):3714-9. PubMed ID: 26907027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.