These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 27152648)
1. Transcriptome Characterization and Functional Marker Development in Sorghum Sudanense. Li J; Wang L; Zhan Q; Liu Y; Yang X PLoS One; 2016; 11(5):e0154947. PubMed ID: 27152648 [TBL] [Abstract][Full Text] [Related]
2. QTL mapping of forage yield and forage yield component traits in Sorghum bicolor x S. sudanense. Liu YL; Wang LH; Li JQ; Zhan QW; Zhang Q; Li JF; Fan FF Genet Mol Res; 2015 Apr; 14(2):3854-61. PubMed ID: 25966155 [TBL] [Abstract][Full Text] [Related]
3. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. McCormick RF; Truong SK; Sreedasyam A; Jenkins J; Shu S; Sims D; Kennedy M; Amirebrahimi M; Weers BD; McKinley B; Mattison A; Morishige DT; Grimwood J; Schmutz J; Mullet JE Plant J; 2018 Jan; 93(2):338-354. PubMed ID: 29161754 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959 [TBL] [Abstract][Full Text] [Related]
5. Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). Yonemaru J; Ando T; Mizubayashi T; Kasuga S; Matsumoto T; Yano M DNA Res; 2009 Jun; 16(3):187-93. PubMed ID: 19363056 [TBL] [Abstract][Full Text] [Related]
6. A chromosome-scale genome sequence of sudangrass (Sorghum sudanense) highlights the genome evolution and regulation of dhurrin biosynthesis. Li J; Wang L; Bible PW; Tu W; Zheng J; Jin P; Liu Y; Du J; Zheng J; Wang YH; Zhan Q Theor Appl Genet; 2023 Mar; 136(3):60. PubMed ID: 36912984 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptomics uncovers alternative splicing and molecular marker development in radish (Raphanus sativus L.). Luo X; Xu L; Liang D; Wang Y; Zhang W; Zhu X; Zhu Y; Jiang H; Tang M; Liu L BMC Genomics; 2017 Jul; 18(1):505. PubMed ID: 28673249 [TBL] [Abstract][Full Text] [Related]
8. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous transcriptome analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with de novo transcriptome assembly. Yazawa T; Kawahigashi H; Matsumoto T; Mizuno H PLoS One; 2013; 8(4):e62460. PubMed ID: 23638091 [TBL] [Abstract][Full Text] [Related]
10. Mapping quantitative trait loci for five forage quality traits in a sorghum-sudangrass hybrid. Li JQ; Wang LH; Zhan QW; Liu YL; Zhang Q; Li JF; Fan FF Genet Mol Res; 2015 Oct; 14(4):13266-73. PubMed ID: 26535640 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. Huang S; Liu Z; Yao R; Li D; Feng H Mol Genet Genomics; 2015 Oct; 290(5):1833-47. PubMed ID: 25860116 [TBL] [Abstract][Full Text] [Related]
12. Construction of ultra-high-density genetic linkage map of a sorghum-sudangrass hybrid using whole genome resequencing. Lu Q; Yu X; Wang H; Yu Z; Zhang X; Zhao Y PLoS One; 2022; 17(11):e0278153. PubMed ID: 36445892 [TBL] [Abstract][Full Text] [Related]
13. Construction of a high-density genetic map using specific-locus amplified fragments in sorghum. Ji G; Zhang Q; Du R; Lv P; Ma X; Fan S; Li S; Hou S; Han Y; Liu G BMC Genomics; 2017 Jan; 18(1):51. PubMed ID: 28061813 [TBL] [Abstract][Full Text] [Related]
14. Whole-Genome Sequence Accuracy Is Improved by Replication in a Population of Mutagenized Sorghum. Addo-Quaye C; Tuinstra M; Carraro N; Weil C; Dilkes BP G3 (Bethesda); 2018 Mar; 8(3):1079-1094. PubMed ID: 29378822 [TBL] [Abstract][Full Text] [Related]
15. Fine mapping of a major QTL Wu G; Yu X; Yu Z; Lu Q; Yang D; Shi Y; Li J; Li J Genome; 2022 Dec; 65(12):605-619. PubMed ID: 36108332 [TBL] [Abstract][Full Text] [Related]
16. Sequencing of transcriptomes from two Miscanthus species reveals functional specificity in rhizomes, and clarifies evolutionary relationships. Kim C; Lee TH; Guo H; Chung SJ; Paterson AH; Kim DS; Lee GJ BMC Plant Biol; 2014 May; 14():134. PubMed ID: 24884969 [TBL] [Abstract][Full Text] [Related]
17. Marker Assisted Selection in Sorghum Using KASP Assay for the Detection of Single Nucleotide Polymorphism/Insertion Deletion. Burow G; Chopra R; Hughes H; Xin Z; Burke J Methods Mol Biol; 2019; 1931():75-84. PubMed ID: 30652284 [TBL] [Abstract][Full Text] [Related]
18. An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Wu YQ; Huang Y Genome; 2007 Jan; 50(1):84-9. PubMed ID: 17546074 [TBL] [Abstract][Full Text] [Related]
19. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology. Pareek CS; Błaszczyk P; Dziuba P; Czarnik U; Fraser L; Sobiech P; Pierzchała M; Feng Y; Kadarmideen HN; Kumar D PLoS One; 2017; 12(2):e0172687. PubMed ID: 28234981 [TBL] [Abstract][Full Text] [Related]
20. Mapping and candidate genes associated with saccharification yield in sorghum. Wang YH; Acharya A; Burrell AM; Klein RR; Klein PE; Hasenstein KH Genome; 2013 Nov; 56(11):659-65. PubMed ID: 24299105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]