BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27152696)

  • 1. Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots.
    Marr C; Zhou JX; Huang S
    Curr Opin Biotechnol; 2016 Jun; 39():207-214. PubMed ID: 27152696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data.
    Ocone A; Haghverdi L; Mueller NS; Theis FJ
    Bioinformatics; 2015 Jun; 31(12):i89-96. PubMed ID: 26072513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell gene expression analysis reveals diversity among human spermatogonia.
    Neuhaus N; Yoon J; Terwort N; Kliesch S; Seggewiss J; Huge A; Voss R; Schlatt S; Grindberg RV; Schöler HR
    Mol Hum Reprod; 2017 Feb; 23(2):79-90. PubMed ID: 28093458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network embedding-based representation learning for single cell RNA-seq data.
    Li X; Chen W; Chen Y; Zhang X; Gu J; Zhang MQ
    Nucleic Acids Res; 2017 Nov; 45(19):e166. PubMed ID: 28977434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.
    Cordero P; Stuart JM
    Pac Symp Biocomput; 2017; 22():576-587. PubMed ID: 27897008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.
    Wang G; Yuan R; Zhu X; Ao P
    Methods Mol Biol; 2018; 1702():215-245. PubMed ID: 29119508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The technology and biology of single-cell RNA sequencing.
    Kolodziejczyk AA; Kim JK; Svensson V; Marioni JC; Teichmann SA
    Mol Cell; 2015 May; 58(4):610-20. PubMed ID: 26000846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TimeXNet: identifying active gene sub-networks using time-course gene expression profiles.
    Patil A; Nakai K
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S2. PubMed ID: 25522063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple and Flexible Computational Framework for Inferring Sources of Heterogeneity from Single-Cell Dynamics.
    Dharmarajan L; Kaltenbach HM; Rudolf F; Stelling J
    Cell Syst; 2019 Jan; 8(1):15-26.e11. PubMed ID: 30638813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying functional gene regulatory network phenotypes underlying single cell transcriptional variability.
    Park J; Ogunnaike B; Schwaber J; Vadigepalli R
    Prog Biophys Mol Biol; 2015 Jan; 117(1):87-98. PubMed ID: 25433230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational strategy for predicting lineage specifiers in stem cell subpopulations.
    Okawa S; del Sol A
    Stem Cell Res; 2015 Sep; 15(2):427-34. PubMed ID: 26368290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons.
    Wang J; Jenjaroenpun P; Bhinge A; Angarica VE; Del Sol A; Nookaew I; Kuznetsov VA; Stanton LW
    Genome Res; 2017 Nov; 27(11):1783-1794. PubMed ID: 29030469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer systems biology in the genome sequencing era: part 1, dissecting and modeling of tumor clones and their networks.
    Wang E; Zou J; Zaman N; Beitel LK; Trifiro M; Paliouras M
    Semin Cancer Biol; 2013 Aug; 23(4):279-85. PubMed ID: 23791722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding development and stem cells using single cell-based analyses of gene expression.
    Kumar P; Tan Y; Cahan P
    Development; 2017 Jan; 144(1):17-32. PubMed ID: 28049689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance.
    Wang E; Zou J; Zaman N; Beitel LK; Trifiro M; Paliouras M
    Semin Cancer Biol; 2013 Aug; 23(4):286-92. PubMed ID: 23792107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational approaches for interpreting scRNA-seq data.
    Rostom R; Svensson V; Teichmann SA; Kar G
    FEBS Lett; 2017 Aug; 591(15):2213-2225. PubMed ID: 28524227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meeting the Challenges of High-Dimensional Single-Cell Data Analysis in Immunology.
    Palit S; Heuser C; de Almeida GP; Theis FJ; Zielinski CE
    Front Immunol; 2019; 10():1515. PubMed ID: 31354705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting single-cell expression to characterize co-expression replicability.
    Crow M; Paul A; Ballouz S; Huang ZJ; Gillis J
    Genome Biol; 2016 May; 17():101. PubMed ID: 27165153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.