These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27152749)

  • 21. A DFT + U study of acetylene selective hydrogenation over anatase supported PdaAgb (a + b = 4) cluster.
    Meng LD; Wang GC
    Phys Chem Chem Phys; 2014 Sep; 16(33):17541-50. PubMed ID: 25026216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pd cluster nanowires as highly efficient catalysts for selective hydrogenation reactions.
    Zhang ZC; Zhang X; Yu QY; Liu ZC; Xu CM; Gao JS; Zhuang J; Wang X
    Chemistry; 2012 Feb; 18(9):2639-45. PubMed ID: 22282407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local reaction rates and surface diffusion on nanolithographically prepared model catalysts: experiments and simulations.
    Laurin M; Johánek V; Grant AW; Kasemo B; Libuda J; Freund HJ
    J Chem Phys; 2005 Feb; 122(8):84713. PubMed ID: 15836083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric hydrogenation in the core of dendrimers.
    He YM; Feng Y; Fan QH
    Acc Chem Res; 2014 Oct; 47(10):2894-906. PubMed ID: 25247446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective alkyne hydrogenation over nano-metal systems: closing the gap between model and real catalysts for industrial applications.
    Cárdenas-Lizana F; Crespo-Quesada M; Kiwi-Minsker L
    Chimia (Aarau); 2012; 66(9):681-6. PubMed ID: 23211726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: a gas-phase approach.
    Lang SM; Bernhardt TM; Krstić M; Bonačić-Koutecký V
    Angew Chem Int Ed Engl; 2014 May; 53(21):5467-71. PubMed ID: 24803209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iridium Ziegler-type hydrogenation catalysts made from [(1,5-COD)Ir(mu-O2C8H15)](2) and AlEt3: spectroscopic and kinetic evidence for the Ir(n) species present and for nanoparticles as the fastest catalyst.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Ozkar S; Johnson KA; Finke RG
    Inorg Chem; 2010 Sep; 49(17):8131-47. PubMed ID: 20681520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bridging the gap between surface science and industrial catalysis.
    Meunier FC
    ACS Nano; 2008 Dec; 2(12):2441-4. PubMed ID: 19206277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pt based PEMFC catalysts prepared from colloidal particle suspensions--a toolbox for model studies.
    Speder J; Altmann L; Roefzaad M; Bäumer M; Kirkensgaard JJ; Mortensen K; Arenz M
    Phys Chem Chem Phys; 2013 Mar; 15(10):3602-8. PubMed ID: 23381718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation.
    Dimitratos N; Lopez-Sanchez JA; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Bethell D; Hutchings GJ
    Phys Chem Chem Phys; 2009 Jul; 11(25):5142-53. PubMed ID: 19562147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High activity redox catalysts synthesized by chemical vapor impregnation.
    Forde MM; Kesavan L; Bin Saiman MI; He Q; Dimitratos N; Lopez-Sanchez JA; Jenkins RL; Taylor SH; Kiely CJ; Hutchings GJ
    ACS Nano; 2014 Jan; 8(1):957-69. PubMed ID: 24341675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.
    Bourikas K; Fountzoula C; Kordulis C
    Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Material and Charge Transport of Large Organic Salt Clusters and Nanoparticles in Electrospray Ion Beam Deposition.
    Rinke G; Harnau L; Rauschenbach S
    J Am Soc Mass Spectrom; 2021 Jul; 32(7):1648-1658. PubMed ID: 33656859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.