BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27152757)

  • 1. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae.
    Leavitt JM; Tong A; Tong J; Pattie J; Alper HS
    Biotechnol J; 2016 Jul; 11(7):866-76. PubMed ID: 27152757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae.
    Kim S; Lee K; Bae SJ; Hahn JS
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2705-14. PubMed ID: 25573467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters.
    Blazeck J; Garg R; Reed B; Alper HS
    Biotechnol Bioeng; 2012 Nov; 109(11):2884-95. PubMed ID: 22565375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae.
    Lee K; Hahn JS
    Mol Microbiol; 2013 Jun; 88(6):1120-34. PubMed ID: 23651256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of hybrid regulated mother-specific yeast promoters for inducible differential gene expression.
    Pothoulakis G; Ellis T
    PLoS One; 2018; 13(3):e0194588. PubMed ID: 29566038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development and characterization of synthetic minimal yeast promoters.
    Redden H; Alper HS
    Nat Commun; 2015 Jul; 6():7810. PubMed ID: 26183606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae.
    Iraqui I; Vissers S; André B; Urrestarazu A
    Mol Cell Biol; 1999 May; 19(5):3360-71. PubMed ID: 10207060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of synthetic, stress-responsive yeast promoters.
    Rajkumar AS; Liu G; Bergenholm D; Arsovska D; Kristensen M; Nielsen J; Jensen MK; Keasling JD
    Nucleic Acids Res; 2016 Sep; 44(17):e136. PubMed ID: 27325743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J; Park KM; Lee H; Son YJ; Choi ES
    FEMS Yeast Res; 2013 Feb; 13(1):140-2. PubMed ID: 23131005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Construction and preliminary applications of a Saccharomyces cerevisiae detection plasmid using for screening promoter elements].
    Wang ZF; Wang ZB; Li LN; Jian-Mei AN; Wang-Wei ; Cheng KD; Kong JQ
    Yao Xue Xue Bao; 2013 Feb; 48(2):228-35. PubMed ID: 23672019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Design of Experiments Approach to Inform the Design of Hybrid Synthetic Yeast Promoters.
    Gilman J; Zulkower V; Menolascina F
    Methods Mol Biol; 2021; 2189():1-17. PubMed ID: 33180289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.
    Naseri G; Balazadeh S; Machens F; Kamranfar I; Messerschmidt K; Mueller-Roeber B
    ACS Synth Biol; 2017 Sep; 6(9):1742-1756. PubMed ID: 28531348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae.
    Nevoigt E; Kohnke J; Fischer CR; Alper H; Stahl U; Stephanopoulos G
    Appl Environ Microbiol; 2006 Aug; 72(8):5266-73. PubMed ID: 16885275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating transcription through development of semi-synthetic yeast core promoters.
    Decoene T; De Maeseneire SL; De Mey M
    PLoS One; 2019; 14(11):e0224476. PubMed ID: 31689317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel
    Feng X; Marchisio MA
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C; Aranda C; Valenzuela L; Riego L; Deluna A; Recillas-Targa F; Filetici P; López-Revilla R; González A
    Mol Microbiol; 2006 Mar; 59(6):1790-806. PubMed ID: 16553884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae.
    Hoshida H; Kondo M; Kobayashi T; Yarimizu T; Akada R
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):241-251. PubMed ID: 27734122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering.
    Dossani ZY; Reider Apel A; Szmidt-Middleton H; Hillson NJ; Deutsch S; Keasling JD; Mukhopadhyay A
    Yeast; 2018 Mar; 35(3):273-280. PubMed ID: 29084380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants.
    Xu L; Liu P; Dai Z; Fan F; Zhang X
    Microb Cell Fact; 2021 Jul; 20(1):148. PubMed ID: 34320991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.