These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2715281)

  • 21. Application of immobilized metal affinity chromatography in proteomics.
    Sun X; Chiu JF; He QY
    Expert Rev Proteomics; 2005 Oct; 2(5):649-57. PubMed ID: 16209645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Analysis of biomolecular interaction by frontal affinity chromatography].
    Kasai K
    Tanpakushitsu Kakusan Koso; 2004 Aug; 49(11 Suppl):1759-64. PubMed ID: 15377013
    [No Abstract]   [Full Text] [Related]  

  • 23. Affinity chromatography: a historical perspective.
    Hage DS; Matsuda R
    Methods Mol Biol; 2015; 1286():1-19. PubMed ID: 25749941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis.
    Mamone G; Picariello G; Ferranti P; Addeo F
    Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New approach in RNA quantification using arginine-affinity chromatography: potential application in eukaryotic and chemically synthesized RNA.
    Martins R; Queiroz JA; Sousa F
    Anal Bioanal Chem; 2013 Nov; 405(27):8849-58. PubMed ID: 24037617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fractionation of proteins by immobilized metal affinity chromatography.
    Sun X; Chiu JF; He QY
    Methods Mol Biol; 2008; 424():205-12. PubMed ID: 18369864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of weak monoclonal antibodies for affinity chromatography.
    Bergström M; Lundblad A; Påhlsson P; Ohlson S
    J Mol Recognit; 1998; 11(1-6):110-3. PubMed ID: 10076819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recognition properties of antisense peptides to Arg8-vasopressin/bovine neurophysin II biosynthetic precursor sequences.
    Fassina G; Zamai M; Brigham-Burke M; Chaiken IM
    Biochemistry; 1989 Oct; 28(22):8811-8. PubMed ID: 2605222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estrogen receptor interaction with immobilized metals: differential molecular recognition of Zn2+, Cu2+ and Ni2+ and separation of receptor isoforms.
    Hutchens TW; Li CM
    J Mol Recognit; 1988 Apr; 1(2):80-92. PubMed ID: 3273655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioaffinity-based separation processes. Part I: Analytical simulation and parametric sensitivity studies.
    Grunfeld H; Sideman S; Lotan N
    J Parenter Sci Technol; 1986; 40(2):51-5. PubMed ID: 3723249
    [No Abstract]   [Full Text] [Related]  

  • 31. Novel approaches to predict the retention of histidine-containing peptides in immobilized metal-affinity chromatography.
    Du H; Zhang X; Wang J; Yao X; Hu Z
    Proteomics; 2008 Jun; 8(11):2185-95. PubMed ID: 18446801
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indirect use of immobilized metal affinity chromatography for isolation and characterization of protein partners.
    Sawadogo M; Van Dyke MW
    Genet Eng (N Y); 1995; 17():53-65. PubMed ID: 7540027
    [No Abstract]   [Full Text] [Related]  

  • 33. Separation of chitosan oligomers by immobilized metal affinity chromatography.
    Le Dévédec F; Bazinet L; Furtos A; Venne K; Brunet S; Mateescu MA
    J Chromatogr A; 2008 Jun; 1194(2):165-71. PubMed ID: 18495137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioaffinity magnetic reactor for peptide digestion followed by analysis using bottom-up shotgun proteomics strategy.
    Korecká L; Jankovicová B; Krenková J; Hernychová L; Slováková M; Le-Nell A; Chmelik J; Foret F; Viovy JL; Bilková Z
    J Sep Sci; 2008 Feb; 31(3):507-15. PubMed ID: 18266262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of accessible immobilized NAD(+) concentration on the bioaffinity chromatographic behavior of NAD(+)-dependent dehydrogenases using the kinetic locking-on strategy.
    Mulcahy P; O'Flaherty M; McMahon M; Oakey L
    Protein Expr Purif; 1999 Jul; 16(2):261-75. PubMed ID: 10419823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acids-nucleotides biomolecular recognition: from biological occurrence to affinity chromatography.
    Sousa F; Cruz C; Queiroz JA
    J Mol Recognit; 2010; 23(6):505-18. PubMed ID: 21038352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Camelid V
    Pabst TM; Wendeler M; Wang X; Bezemer S; Hermans P; Hunter AK
    Biotechnol J; 2017 Feb; 12(2):. PubMed ID: 27677057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic metal-binding protein surface domains for metal ion-dependent interaction chromatography. II. Immobilization of synthetic metal-binding peptides from metal ion transport proteins as model bioactive protein surface domains.
    Hutchens TW; Yip TT
    J Chromatogr; 1992 Jun; 604(1):133-41. PubMed ID: 1639922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins.
    Kinoshita E; Yamada A; Takeda H; Kinoshita-Kikuta E; Koike T
    J Sep Sci; 2005 Feb; 28(2):155-62. PubMed ID: 15754823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Affinity chromatography without immobilized ligands; a new method for studying macromolecular interactions using high-performance liquid chromatography.
    Endo S; Hayashi H; Wada A
    Anal Biochem; 1982 Aug; 124(2):372-9. PubMed ID: 7149235
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.