These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 27152912)
1. Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries. Vissers DR; Chen Z; Shao Y; Engelhard M; Das U; Redfern P; Curtiss LA; Pan B; Liu J; Amine K ACS Appl Mater Interfaces; 2016 Jun; 8(22):14244-51. PubMed ID: 27152912 [TBL] [Abstract][Full Text] [Related]
2. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. Li W; Kim UH; Dolocan A; Sun YK; Manthiram A ACS Nano; 2017 Jun; 11(6):5853-5863. PubMed ID: 28502161 [TBL] [Abstract][Full Text] [Related]
3. The Role of Cations on the Performance of Lithium Ion Batteries: A Quantitative Analytical Approach. Nowak S; Winter M Acc Chem Res; 2018 Feb; 51(2):265-272. PubMed ID: 29381052 [TBL] [Abstract][Full Text] [Related]
4. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Zhan C; Lu J; Jeremy Kropf A; Wu T; Jansen AN; Sun YK; Qiu X; Amine K Nat Commun; 2013; 4():2437. PubMed ID: 24077265 [TBL] [Abstract][Full Text] [Related]
5. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries. Han JG; Lee SJ; Lee J; Kim JS; Lee KT; Choi NS ACS Appl Mater Interfaces; 2015 Apr; 7(15):8319-29. PubMed ID: 25822879 [TBL] [Abstract][Full Text] [Related]
6. Metal/LiF/Li Du J; Wang W; Sheng Eng AY; Liu X; Wan M; Seh ZW; Sun Y Nano Lett; 2020 Jan; 20(1):546-552. PubMed ID: 31775001 [TBL] [Abstract][Full Text] [Related]
7. Interfacial Reaction Mechanisms on Graphite Anodes for K-Ion Batteries. Naylor AJ; Carboni M; Valvo M; Younesi R ACS Appl Mater Interfaces; 2019 Dec; 11(49):45636-45645. PubMed ID: 31718143 [TBL] [Abstract][Full Text] [Related]
8. Delineating the Effects of Transition-Metal-Ion Dissolution on Silicon Anodes in Lithium-Ion Batteries. Torres RM; Manthiram A Small; 2024 Jul; 20(27):e2309350. PubMed ID: 38284325 [TBL] [Abstract][Full Text] [Related]
9. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
10. Understanding and Suppressing the Destructive Cobalt(II) Species in Graphite Interphase. Wang K; Xing L; Xu K; Zhou H; Li W ACS Appl Mater Interfaces; 2019 Aug; 11(34):31490-31498. PubMed ID: 31364838 [TBL] [Abstract][Full Text] [Related]
11. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286 [TBL] [Abstract][Full Text] [Related]
12. Lithium-Ion Intercalation into Graphite in SO Kim A; Jung H; Song J; Kim HJ; Jeong G; Kim H ACS Appl Mater Interfaces; 2019 Mar; 11(9):9054-9061. PubMed ID: 30735029 [TBL] [Abstract][Full Text] [Related]
13. Combined Stabilizing of the Solid-Electrolyte Interphase with Suppression of Graphite Exfoliation via Additive-Solvent Optimization in Li-Ion Batteries. Moharana S; West G; Menon AS; da Silva WL; Walker M; Loveridge MJ ACS Appl Mater Interfaces; 2023 Nov; 15(43):50185-50195. PubMed ID: 37851950 [TBL] [Abstract][Full Text] [Related]
14. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
15. Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes. Langdon J; Manthiram A Adv Mater; 2022 Oct; 34(41):e2205188. PubMed ID: 35985644 [TBL] [Abstract][Full Text] [Related]
16. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries. Vargas Ó; Caballero Á; Morales J; Rodríguez-Castellón E ACS Appl Mater Interfaces; 2014 Mar; 6(5):3290-8. PubMed ID: 24521074 [TBL] [Abstract][Full Text] [Related]
17. Stabilizing High-Voltage LiNi Maiti S; Sclar H; Grinblat J; Talianker M; Elias Y; Wu X; Kondrakov A; Aurbach D Small Methods; 2022 Oct; 6(10):e2200674. PubMed ID: 36074984 [TBL] [Abstract][Full Text] [Related]
18. Initial solid electrolyte interphase formation process of graphite anode in LiPF6 electrolyte: an in situ ECSTM investigation. Wang L; Deng X; Dai PX; Guo YG; Wang D; Wan LJ Phys Chem Chem Phys; 2012 May; 14(20):7330-6. PubMed ID: 22526455 [TBL] [Abstract][Full Text] [Related]
19. Lithium compound deposition on mesocarbon microbead anode of lithium ion batteries after long-term cycling. Yang L; Cheng X; Gao Y; Zuo P; Ma Y; Du C; Shen B; Cui Y; Guan T; Yin G ACS Appl Mater Interfaces; 2014 Aug; 6(15):12962-70. PubMed ID: 25020035 [TBL] [Abstract][Full Text] [Related]
20. Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes. Yim T; Han YK ACS Appl Mater Interfaces; 2017 Sep; 9(38):32851-32858. PubMed ID: 28880070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]