BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27152938)

  • 1. Repercussion of Megakaryocyte-Specific Gata1 Loss on Megakaryopoiesis and the Hematopoietic Precursor Compartment.
    Meinders M; Hoogenboezem M; Scheenstra MR; De Cuyper IM; Papadopoulos P; Németh T; Mócsai A; van den Berg TK; Kuijpers TW; Gutiérrez L
    PLoS One; 2016; 11(5):e0154342. PubMed ID: 27152938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible Gata1 suppression expands megakaryocyte-erythroid progenitors from embryonic stem cells.
    Noh JY; Gandre-Babbe S; Wang Y; Hayes V; Yao Y; Gadue P; Sullivan SK; Chou ST; Machlus KR; Italiano JE; Kyba M; Finkelstein D; Ulirsch JC; Sankaran VG; French DL; Poncz M; Weiss MJ
    J Clin Invest; 2015 Jun; 125(6):2369-74. PubMed ID: 25961454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of the Gata1 gene IE exon leads to variant transcript expression and the production of a GATA1 protein lacking the N-terminal domain.
    Kobayashi E; Shimizu R; Kikuchi Y; Takahashi S; Yamamoto M
    J Biol Chem; 2010 Jan; 285(1):773-83. PubMed ID: 19854837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Child With Dyserythropoietic Anemia and Megakaryocyte Dysplasia Due to a Novel 5'UTR GATA1s Splice Mutation.
    Zucker J; Temm C; Czader M; Nalepa G
    Pediatr Blood Cancer; 2016 May; 63(5):917-21. PubMed ID: 26713410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared roles for
    Chiu SK; Orive SL; Moon MJ; Saw J; Ellis S; Kile BT; Huang Y; Chacon D; Pimanda JE; Beck D; Hamilton JR; Tremblay CS; Curtis DJ
    Blood; 2019 Sep; 134(10):826-835. PubMed ID: 31300405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation.
    Hamlett I; Draper J; Strouboulis J; Iborra F; Porcher C; Vyas P
    Blood; 2008 Oct; 112(7):2738-49. PubMed ID: 18625887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis.
    Gutiérrez L; Tsukamoto S; Suzuki M; Yamamoto-Mukai H; Yamamoto M; Philipsen S; Ohneda K
    Blood; 2008 Apr; 111(8):4375-85. PubMed ID: 18258797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage-specific combinatorial action of enhancers regulates mouse erythroid Gata1 expression.
    Drissen R; Guyot B; Zhang L; Atzberger A; Sloane-Stanley J; Wood B; Porcher C; Vyas P
    Blood; 2010 Apr; 115(17):3463-71. PubMed ID: 20154211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage specific FAK knockout.
    Hitchcock IS; Fox NE; Prévost N; Sear K; Shattil SJ; Kaushansky K
    Blood; 2008 Jan; 111(2):596-604. PubMed ID: 17925492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1.
    Kuhl C; Atzberger A; Iborra F; Nieswandt B; Porcher C; Vyas P
    Mol Cell Biol; 2005 Oct; 25(19):8592-606. PubMed ID: 16166640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1.
    Stachura DL; Chou ST; Weiss MJ
    Blood; 2006 Jan; 107(1):87-97. PubMed ID: 16144799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FOG1 requires NuRD to promote hematopoiesis and maintain lineage fidelity within the megakaryocytic-erythroid compartment.
    Gregory GD; Miccio A; Bersenev A; Wang Y; Hong W; Zhang Z; Poncz M; Tong W; Blobel GA
    Blood; 2010 Mar; 115(11):2156-66. PubMed ID: 20065294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor GATA-1 in megakaryocyte development.
    Orkin SH; Shivdasani RA; Fujiwara Y; McDevitt MA
    Stem Cells; 1998; 16 Suppl 2():79-83. PubMed ID: 11012179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Megakaryopoiesis: transcriptional insights into megakaryocyte maturation.
    Kostyak JC; Naik UP
    Front Biosci; 2007 Jan; 12():2050-62. PubMed ID: 17127443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and transcriptional regulation of megakaryocyte differentiation.
    Shivdasani RA
    Stem Cells; 2001; 19(5):397-407. PubMed ID: 11553848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse prenatal platelet-forming lineages share a core transcriptional program but divergent dependence on MPL.
    Potts KS; Sargeant TJ; Dawson CA; Josefsson EC; Hilton DJ; Alexander WS; Taoudi S
    Blood; 2015 Aug; 126(6):807-16. PubMed ID: 25995324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and molecular biology of megakaryocyte differentiation in the absence of lineage-restricted transcription factors.
    Lecine P; Shivdasani RA
    Stem Cells; 1998; 16 Suppl 2():91-5. PubMed ID: 11012181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Gata1
    Shin E; Jeong JG; Chung H; Jung H; Park C; Yoon SR; Kim TD; Lee SJ; Choi I; Noh JY
    Biochem Biophys Res Commun; 2020 Jul; 528(1):46-53. PubMed ID: 32456797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N- and C-terminal transactivation domains of GATA1 protein coordinate hematopoietic program.
    Kaneko H; Kobayashi E; Yamamoto M; Shimizu R
    J Biol Chem; 2012 Jun; 287(25):21439-49. PubMed ID: 22556427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis.
    Takayama M; Fujita R; Suzuki M; Okuyama R; Aiba S; Motohashi H; Yamamoto M
    Mol Cell Biol; 2010 Jun; 30(11):2668-80. PubMed ID: 20351175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.