These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 27152999)
1. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Alketife AM; Judd S; Znad H Environ Technol; 2017 Jan; 38(1):94-102. PubMed ID: 27152999 [TBL] [Abstract][Full Text] [Related]
2. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Gupta PL; Choi HJ; Lee SM Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689 [TBL] [Abstract][Full Text] [Related]
3. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511 [TBL] [Abstract][Full Text] [Related]
4. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Du Z; Hu B; Shi A; Ma X; Cheng Y; Chen P; Liu Y; Lin X; Ruan R Bioresour Technol; 2012 Dec; 126():354-7. PubMed ID: 23116820 [TBL] [Abstract][Full Text] [Related]
5. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration. Åkerström AM; Mortensen LM; Rusten B; Gislerød HR J Environ Manage; 2014 Nov; 144():118-24. PubMed ID: 24935023 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Beuckels A; Smolders E; Muylaert K Water Res; 2015 Jun; 77():98-106. PubMed ID: 25863319 [TBL] [Abstract][Full Text] [Related]
8. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006 [TBL] [Abstract][Full Text] [Related]
9. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology. Lee YR; Chen JJ Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723 [TBL] [Abstract][Full Text] [Related]
10. Polishing of anaerobic secondary effluent by Chlorella vulgaris under low light intensity. Cheng T; Wei CH; Leiknes T Bioresour Technol; 2017 Oct; 241():360-368. PubMed ID: 28577485 [TBL] [Abstract][Full Text] [Related]
12. Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency. Attasat S; Wanichpongpan P; Ruenglertpanyakul W Water Sci Technol; 2013; 67(2):271-7. PubMed ID: 23168623 [TBL] [Abstract][Full Text] [Related]
13. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786 [TBL] [Abstract][Full Text] [Related]
14. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris. Szwarc K; Szwarc D; Zieliński M Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532 [TBL] [Abstract][Full Text] [Related]
15. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760 [TBL] [Abstract][Full Text] [Related]
16. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Chia MA; Lombardi AT; da Graça Gama Melão M; Parrish CC Aquat Toxicol; 2015 Mar; 160():87-95. PubMed ID: 25625522 [TBL] [Abstract][Full Text] [Related]
17. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production. Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348 [TBL] [Abstract][Full Text] [Related]
18. The toxicity of naphthalene to marine Chlorella vulgaris under different nutrient conditions. Kong Q; Zhu L; Shen X J Hazard Mater; 2010 Jun; 178(1-3):282-6. PubMed ID: 20133058 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327 [TBL] [Abstract][Full Text] [Related]
20. Urban nutrient recovery from fresh human urine through cultivation of Chlorella sorokiniana. Zhang S; Lim CY; Chen CL; Liu H; Wang JY J Environ Manage; 2014 Dec; 145():129-36. PubMed ID: 25016102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]