BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 27153067)

  • 1. Minimal Functional Sites in Metalloproteins and Their Usage in Structural Bioinformatics.
    Rosato A; Valasatava Y; Andreini C
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites.
    Valasatava Y; Andreini C; Rosato A
    Sci Rep; 2015 Mar; 5():9486. PubMed ID: 25820752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetalPDB in 2018: a database of metal sites in biological macromolecular structures.
    Putignano V; Rosato A; Banci L; Andreini C
    Nucleic Acids Res; 2018 Jan; 46(D1):D459-D464. PubMed ID: 29077942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.
    Ajitha M; Sundar K; Arul Mugilan S; Arumugam S
    Proteins; 2018 Mar; 86(3):322-331. PubMed ID: 29235146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of metal sites in proteins: non-heme iron sites as a case study.
    Andreini C; Bertini I; Cavallaro G; Najmanovich RJ; Thornton JM
    J Mol Biol; 2009 May; 388(2):356-80. PubMed ID: 19265704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal functional sites allow a classification of zinc sites in proteins.
    Andreini C; Bertini I; Cavallaro G
    PLoS One; 2011; 6(10):e26325. PubMed ID: 22043316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications.
    Andreini C; Rosato A
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetalPDB: a database of metal sites in biological macromolecular structures.
    Andreini C; Cavallaro G; Lorenzini S; Rosato A
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D312-9. PubMed ID: 23155064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.
    Valasatava Y; Rosato A; Cavallaro G; Andreini C
    J Biol Inorg Chem; 2014 Aug; 19(6):937-45. PubMed ID: 24699831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant coordination geometries discovered in the most abundant metalloproteins.
    Yao S; Flight RM; Rouchka EC; Moseley HN
    Proteins; 2017 May; 85(5):885-907. PubMed ID: 28142195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting 3D structural templates for detection of metal-binding sites in protein structures.
    Goyal K; Mande SC
    Proteins; 2008 Mar; 70(4):1206-18. PubMed ID: 17847089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bioinformatics view of zinc enzymes.
    Andreini C; Bertini I
    J Inorg Biochem; 2012 Jun; 111():150-6. PubMed ID: 22209023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MetalS2: a tool for the structural alignment of minimal functional sites in metal-binding proteins and nucleic acids.
    Andreini C; Cavallaro G; Rosato A; Valasatava Y
    J Chem Inf Model; 2013 Nov; 53(11):3064-75. PubMed ID: 24117467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A less-biased analysis of metalloproteins reveals novel zinc coordination geometries.
    Yao S; Flight RM; Rouchka EC; Moseley HN
    Proteins; 2015 Aug; 83(8):1470-87. PubMed ID: 26009987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry meets biology in the coordination dynamics of metalloproteins.
    Maret W
    J Inorg Biochem; 2024 Feb; 251():112431. PubMed ID: 38016325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.